

Lecture Notes in Computer Science 5156
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Klaus Havelund Rupak Majumdar
Jens Palsberg (Eds.)

Model Checking
Software

15th International SPIN Workshop
Los Angeles, CA, USA, August 10-12, 2008
Proceedings

13

Volume Editors

Klaus Havelund
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA, USA
E-mail: klaus.havelund@jpl.nasa.gov

Rupak Majumdar
Department of Computer Science
University of California
Los Angeles, CA, USA
E-mail: rupak@cs.ucla.edu

Jens Palsberg
Department of Computer Science
University of California
Los Angeles, CA, USA
E-mail: palsberg@ucla.edu

Library of Congress Control Number: 2008931715

CR Subject Classification (1998): F.3, D.2.4, D.3.1, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85113-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85113-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12443697 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 15th International SPIN Workshop
on Model Checking of Software (SPIN 2008), which took place at the University
of California, Los Angeles, August 10–12, 2008. The SPIN workshops form a
forum for researchers and practitioners interested in model checking techniques
for the verification and validation of software systems. Model checking is the
process of checking whether a given structure is a model of a given logical for-
mula. The structure normally represents a set of tasks executing in parallel in an
interleaved fashion, resulting in a non-deterministic set of executions. The main
focus of the workshop series is software systems, including models and programs.
Subjects of interest include theoretical and algorithmic foundations as well as
tools for software model checking. The workshop in addition aims to foster inter-
actions and exchanges of ideas with related areas in software engineering, such
as static analysis, dynamic analysis, and testing.

There were 41 submissions, including 38 full papers and 3 tool papers. Each
submission was reviewed by at least three Programme Committee members. The
committee decided to accept 18 papers, including 17 regular papers and 1 tool
paper. The programme also included five invited talks (in alphabetical order):
Matthew Dwyer (University of Nebraska) “Residual Checking of Safety Prop-
erties”, Daniel Jackson (MIT) “Patterns of Software Modelling: From Classic
To Funky”, Shaz Qadeer (Microsoft Research) “The Case for Context-Bounded
Verification of Concurrent Programs”, Wolfram Schulte (Microsoft Research)
“Using Dynamic Symbolic Execution to Improve Deductive Verification”, and
Yannis Smaragdakis (University of Oregon) “Combining Static and Dynamic
Reasoning for the Discovery of Program Properties”.

We would like to thank the authors of submitted papers, the invited speakers,
the Programme Committee members, the additional reviewers, and the Steer-
ing Committee for their help in composing a strong programme. We thank
Springer for having agreed to publish these proceedings as a volume of Lecture
Notes in Computer Science. The EasyChair conference system was used for the
entire management of paper submissions for the workshop. This includes paper
submission, reviewing, and final generation of the proceedings.

June 2008 Klaus Havelund
Rupak Majumdar

Jens Palsberg

Conference Organization

General Chair

Jens Palsberg UC Los Angeles, USA

Program Chairs

Klaus Havelund NASA JPL/Caltech, USA
Rupak Majumdar UC Los Angeles, USA

Program Committee

Christel Baier Bonn, Germany
Dragan Bošnački Eindhoven, Netherlands
Lubos Brim Brno, Czech
Stefan Edelkamp Dortmund, Germany
Dawson Engler Stanford, USA
Kousha Etessami Edinburgh, UK
Susanne Graf Verimag, France
John Hatcliff Kansas State University, USA
Gerard Holzmann NASA JPL/Caltech, USA
Franjo Ivančić NEC, USA
Sarfraz Khurshid UT Austin, USA
Kim Guldstrand Larsen Aalborg, Denmark
Madan Musuvathi Microsoft, USA
Joel Ouaknine Oxford, UK
Corina Pasareanu NASA Ames, USA
Doron Peled Warwick, UK
Paul Pettersson Uppsala, Sweden
Koushik Sen Berkeley, USA
Natasha Sharygina Lugano, Switzerland
Eran Yahav IBM, USA

Steering Committee

Dragan Bošnački Eindhoven, Netherlands
Stefan Edelkamp Dortmund, Germany
Susanne Graf Verimag, France
Stefan Leue Konstanz, Germany
Antti Valmari Tempere, Finland
Pierre Wolper Liege, Belgium

VIII Organization

Advisory Committee

Gerard Holzmann NASA JPL/Caltech, USA
Amir Pnueli Weizmann Institute, Israel
Moshe Vardi Rice University, USA

External Reviewers

Jiri Barnat
Roberto Bruttomesso
Jan Carlson
Jyotirmoy Deshmukh
Michael Emmi
Jeffrey Fischer
Malay Ganai
Pierre Ganty
John H̊akansson
Pallavi Joshi
Peter Kissmann
Shuhao Li
Edgar Pek
Noam Rinetzky
Andrey Rybalchenko
Sriram Sankaranarayanan

Cristina Seceleanu
Ohad Shacham
Nishant Sinha
Damian Sulewski
Ashish Tiwari
Oksana Tkachuk
Stefano Tonetta
Simon Tschirner
Aliaksei Tsitovich
Martin Vechev
Helmut Veith
Chao Wang
Ru-Gang Xu
Greta Yorsh
Damian Sulewski

Table of Contents

Invited Contributions

Residual Checking of Safety Properties . 1
Matthew B. Dwyer and Rahul Purandare

The Case for Context-Bounded Verification of Concurrent Programs 3
Shaz Qadeer

Combining Static and Dynamic Reasoning for the Discovery of Program
Properties . 7

Yannis Smaragdakis

Using Dynamic Symbolic Execution to Improve Deductive
Verification . 9

Dries Vanoverberghe, Nikolaj Bjørner, Jonathan de Halleux,
Wolfram Schulte, and Nikolai Tillmann

Regular Papers

Automated Evaluation of Secure Route Discovery in MANET
Protocols . 26

Todd R. Andel and Alec Yasinsac

Model Checking Abstract Components within Concrete Software
Environments . 42

Tonglaga Bao and Mike Jones

Generating Compact MTBDD-Representations from Probmela
Specifications . 60

Frank Ciesinski, Christel Baier, Marcus Größer, and David Parker

Dynamic Delayed Duplicate Detection for External Memory Model
Checking . 77

Sami Evangelista

State Focusing: Lazy Abstraction for the Mu-Calculus 95
Harald Fecher and Sharon Shoham

Efficient Modeling of Concurrent Systems in BMC 114
Malay K. Ganai and Aarti Gupta

Tackling Large Verification Problems with the Swarm Tool 134
Gerard J. Holzmann, Rajeev Joshi, and Alex Groce

X Table of Contents

Formal Verification of a Flash Memory Device Driver – An Experience
Report . 144

Moonzoo Kim, Yunja Choi, Yunho Kim, and Hotae Kim

Layered Duplicate Detection in External-Memory Model Checking 160
Peter Lamborn and Eric A. Hansen

Dependency Analysis for Control Flow Cycles in Reactive
Communicating Processes . 176

Stefan Leue, Alin Ştefănescu, and Wei Wei

Improved On-the-Fly Equivalence Checking Using Boolean Equation
Systems . 196

Radu Mateescu and Emilie Oudot

Resource-Aware Verification Using Randomized Exploration of Large
State Spaces . 214

Nazha Abed, Stavros Tripakis, and Jean-Marc Vincent

Incremental Hashing for Spin . 232
Viet Yen Nguyen and Theo C. Ruys

Verifying Compiler Based Refinement of BluespecTM Specifications
Using the SPIN Model Checker . 250

Gaurav Singh and Sandeep K. Shukla

Symbolic Context-Bounded Analysis of Multithreaded Java
Programs . 270

Dejvuth Suwimonteerabuth, Javier Esparza, and Stefan Schwoon

Efficient Stateful Dynamic Partial Order Reduction 288
Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and
Robert M. Kirby

Symbolic String Verification: An Automata-Based Approach 306
Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra

Verifying Multi-threaded C Programs with SPIN . 325
Anna Zaks and Rajeev Joshi

Author Index . 343

Residual Checking of Safety Properties

Matthew B. Dwyer and Rahul Purandare

Department of Computer Science and Engineering University of Nebraska-Lincoln
{dwyer,rpuranda}@cse.unl.edu

Abstract. Program analysis and verification techniques have made great
strides, yet, as every researcher in the field will admit it is easy to find a
program and property for which a given technique is not cost-effective.
Investigating the conventional wisdom that programs are mostly correct,
we have observed that even failed program analyses usually produce a
wealth of information about the parts of the program that operate cor-
rectly. Leveraging this information can help focus subsequent analysis and
verification activities to make them more cost-effective.

1 The Limits of Verification

There have been great advances in static program analysis and verification tech-
niques over the past two decades. These techniques have scaled to increasingly
large and complex programs, significantly improved the utility and precision of
analysis results, and targeted more expressive correctness property specifications.
Despite these advances, there remain very real practical limits to the application
of those techniques. Given nearly any program analysis or verification technique,
it is relatively easy to find a program and correctness property for which it is
either intractable or uselessly imprecise.

There is a broadly held belief that, with sufficient investments, program anal-
ysis and verification techniques will continue to improve over the next decade [1],
but these techniques will be applied to software of increasing size and complexity.
Consequently, it is likely that a practical limit on the applicability of state-of-the-
art program analysis and verification techniques will exist for some time.

2 Prove What You Can and Focus on the Remainder

When the limit of a program verification technique is encountered an inconclusive
result will be produced. Partial results may have been computed, if scalability
was the obstacle, or false error reports may have been produced, if precision was
the obstacle. In either case, it is sensible to ask whether the information that
was calculated is of any value in focusing further program analysis or testing.
We believe that this information can be extremely valuable.

The conventional wisdom that underlies software fault tolerance [2] and mu-
tation testing [3] approaches asserts that well-developed programs are mostly
correct. If this is the case, then it may be possible to infer that non-trivial por-
tions of a program are correct by analyzing the intermediate results of a failed

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M.B. Dwyer and R. Purandare

program analysis or verification run. Our recent work [4], which considers static
typestate analysis [5], and recent work by Lal et al. [6], which considers push-
down model checking, demonstrate this to be the case. The techniques differ in
their technical details, but both calculate sets of program locations that never
participate in violations of the analyzed property; we refer to the remaining
program locations as the analysis residue.

The residue can be used for multiple purposes. A subsequent verification or
analysis could focus solely on those statements by, for example, customizing its
abstractions based on those statements. A test generation method could target
those statements. In our work [4], we exploit this information to eliminate in-
strumentation for statements that are not in the residue to significantly reduce
the cost of run-time monitoring of typestate properties.

Classic examples of staged analyses, such as those used for array dependence
testing [7], have illustrated the advantages of focusing on the analysis residue
for state properties. We believe that there is significant potential for staging
multiple forms of program analyses and verification approaches that are focused
on safety properties.

Acknowledgments

This work was supported in part by the Army Research Office through DURIP
award W91NF-04-1-0104, and by the National Science Foundation through CSR
award 0720654, CCF awards 0429149 and 0541263, and CRI award 0454203.

References

1. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.
ACM 50, 63–69 (2003)

2. Randell, B., Lee, P.A., Treleaven, P.C.: Reliability issues in computing system de-
sign. ACM Comput. Surv. 10, 123–165 (1978)

3. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. Computer 11, 34–41 (1978)

4. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis: exploiting static
analysis results to reformulate and reduce the cost of dynamic analysis. In: 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2007), Atlanta, Georgia, USA, November 5-9, 2007, pp. 124–133 (2007)

5. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12, 157–171 (1986)

6. Lal, A., Kidd, N., Reps, T.W., Touili, T.: Abstract error projection. In: Riis Nielson,
H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 200–217. Springer, Heidelberg
(2007)

7. Wolfe, M.: High performance compilers for parallel computing. Addison-Wesley,
Reading (1996)

The Case for Context-Bounded Verification of

Concurrent Programs

Shaz Qadeer

Microsoft Research

Concurrent programs are difficult to get right. Subtle interactions among com-
municating threads in the program can result in behaviors unexpected to the
programmer. These behaviors typically result in bugs that occur late in the
software development cycle or even after the software is released. Such bugs
are difficult to reproduce and difficult to debug. As a result, they have a huge
adverse impact on the productivity of programmers and the cost of software de-
velopment. Therefore, tools that can help detect and debug concurrency errors
will likely provide a significant boost to software productivity.

The problem of automatic and precise defect-detection for programs, whether
concurrent or sequential, is undecidable in general. The importance of this prob-
lem has led researchers, over the past 50 years, to devise various techniques to
circumvent this undecidability barrier. An important breakthrough in this direc-
tion is the idea of analyzing models of a program rather than the program itself.
The fundamental insight is that although the set of behaviors of a concrete pro-
gram might be insurmountably large, there is usually a simple abstract model
of the program that contains enough information to prove that the program sat-
isfies a particular partial specification. If the problem of analyzing the abstract
model is decidable, then analysis of the model could help in pinpointing defects
in the program. Of course, the model itself cannot be created automatically in
general; algorithms for creating these models typically require input from the
programmer.

Two models have been widely and successfully used for defect detection in
sequential programs—finite-state machines and pushdown machines. For these
models, the basic analysis problem, known as the reachability problem, is the
following:

Given an error state e, is there an execution of the machine from the
initial state to e?

For both models, there are polynomial-time algorithms for solving the reacha-
bility problem; the complexity is linear for finite-state machines and cubic for
pushdown machines. A big reason for the success of these models in software
verification is the relatively low complexity of reachability analysis for them.
Unfortunately, the same modeling tools have not worked so well for concurrent
programs. The natural extensions of these models to handle concurrency are
communicating finite-state machines and communicating pushdown machines

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 3–6, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 S. Qadeer

respectively. While reachability analysis is PSPACE-complete for communicating
finite-state machines, it is undecidable for communicating pushdown machines.
Consequently, the use of abstract models for verifying concurrent programs has
seen limited success.

This position paper argues that the high complexity of reachability analysis
for models of concurrent computation can be mitigated by performing context-
bounded verification of these models. To understand the idea of context-bounded
verification, we take a closer look at concurrent behaviors. We model a concurrent
computation as an interleaving of actions performed by tasks that are concur-
rently executing and communicating using shared resources. A context switch
occurs in such a computation whenever the execution of a task is temporarily
interrupted by some other task. The context-bounded reachability problem, for
both communicating finite-state machines and communicating pushdown ma-
chines, is the following:

Given an error state e and a bound c ≥ 0, is there an execution of the
machine from the initial state to e with no more than c context switches?

Note that context-bounded reachability is significantly different from depth-
bounded reachability, where executions are restricted to some length d ≥ 0.
Bounding the number of context switches in an execution does not bound the
length of the execution because a task may perform an unbounded number of
steps prior to a context switch.

Bounding the number of context switches has a significant impact on the com-
plexity of the reachability problem; context-bounded reachability is NP-complete
both for communicating finite-state machines and communicating pushdown ma-
chines [5,3]. Since the problem is NP-complete, it is unlikely that there is a
polynomial-time algorithm for it. However, there is reason to be optimistic. In
the last decade, significant advances have been made in satisfiability solving. Re-
searchers have built a number of powerful satisfiability solvers that have managed
to solve practical and real-world instances of hardware and software verification
problems. Since context-bounded reachability is in NP, it can be translated to
satisfiability thereby allowing these powerful solvers to be leveraged. In addition,
there exist algorithms for solving context-bounded reachability that are polyno-
mial in the size of the model and exponential in c [5,2]. These algorithms could
be used for scalable verification, at least for small values of c.

If an oracle for the context-bounded reachability problem returns the answer
No for a particular bound c, then we are assured that the error state is un-
reachable via executions with up to c context switches. However, this answer
says nothing about executions with more than c context switches. To decrease
the likelihood of missed errors, we could start with a small value of c (zero,
for example) and keep incrementing it as long as the oracle returns the answer
No, until the validation resources allocated to the program are exhausted. There
are two advantages of this pay-as-you-go approach to verification. First, success-
ful context-bounded verification for a bound c is a useful and intuitive coverage

The Case for Context-Bounded Verification of Concurrent Programs 5

metric suitable for concurrent programs and orthogonal to sequential coverage
metrics such as line or branch coverage. Second, we believe that the number
of context switches in an execution is a good metric of the complexity of that
execution. Hence, an erroneous execution returned by this iterative approach is
one of the simplest witnesses to the error and could help the programmer localize
the cause of the error quickly.

Obviously, the pay-as-you-go approach to verification of concurrent programs
is just as easily facilitated by depth-bounding as by context-bounding. However,
depth-bounding lacks the two aforementioned advantages of context-bounding
because the depth of explored executions is not an intuitive metric for the com-
plexity of concurrent executions.

The above discussion provides motivation for context-bounded verification
from the point of view of computational complexity. However, our argument
would rightly be considered weak if errors in concurrent programs manifested
only in executions with a large number of context switches. Fortunately, there
is significant empirical evidence indicating that is not the case. Over the past
few years, we have implemented context-bounded reachability analysis in three
software model checkers—Kiss [6], Zing [1], and Chess [4]. We have applied
these tools to many real-world concurrent programs and discovered numerous
errors exhibited by executions with a small number of context switches.

Context-bounding is a novel, interesting, and useful perspective on the prob-
lem of verifying concurrent systems. Recent work has provided both theoretical
and practical evidence of the power of context-bounded verification. However,
there are many important challenges ahead. First, to apply context-bounded ver-
ification to a concurrent program requires the identification of program tasks.
In many programs, such as multithreaded programs manipulating shared data-
structures, the task abstraction is obvious and corresponds to the syntactic ab-
straction of a thread. However, for message-passing or event-driven programs,
the task abstraction is not easily discerned. Consequently, we need linguistic
techniques to specify and analysis techniques to discover tasks in concurrent
programs. Second, to make use of satisfiability solvers we need efficient encod-
ings of the context-bounded reachability problem into the satisfiability problem.
Finally, we need techniques to construct concurrent finite-state and pushdown
models from software implementations; these techniques must interact well with
the encoding techniques.

References

1. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker
for concurrent software. Technical Report MSR-TR-2004-10, Microsoft Research
(2004)

2. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. In: CAV 2008: Computer Aided Verification (2008)

3. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: TACAS 2008: Tools and Algorithms for the Con-
struction and Analysis of Systems (2008)

6 S. Qadeer

4. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI 2007: Programming Language Design and Im-
plementation, pp. 446–455 (2007)

5. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

6. Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI 2004: Pro-
gramming Language Design and Implementation, pp. 14–24. ACM Press, New York
(2004)

Combining Static and Dynamic Reasoning for

the Discovery of Program Properties

Yannis Smaragdakis

Department of Computer and Information Science
University of Oregon

Eugene, OR 97403-1202, USA
yannis@cs.uoregon.edu

Abstract. Combinations of static and dynamic analyses can be prof-
itably employed in tasks such as program understanding, bug detection,
behavior discovery, etc. In the past several years, we have explored a par-
ticular scheme for improving the quality of bug reports in a sequence of
tools: JCrasher, Check ’n’ Crash, and DSD-Crasher. We have addition-
ally explored the combination of dynamic and symbolic execution for the
purpose of inferring program invariants in the DySy tool. In this talk,
we discuss such approaches, while distinguishing the conceptual benefits
and drawbacks of each approach from the abilities and shortcomings of
the current representative tools.

The idea of combining static and dynamic program analysis has been recog-
nized as highly promising and explored by researchers for over two decades.
The distinction of “static” and “dynamic” analyses is itself fairly fluid, with re-
searchers often using the terms to refer to techniques (e.g., symbolic execution
vs. concrete execution) rather than to whether the analysis depends on dynamic
input. We generally refer to an analysis as “static” if it emphasizes data-flow
richness/generality over control-flow accuracy and “dynamic” if it emphasizes
control-flow accuracy over data-flow richness/generality.

We have used combinations of static and dynamic analyses over several years
for the purpose of discovering program properties. This work produced a se-
quence of progressively more complex tools for finding defects (bugs) in Java
programs: JCrasher [1], Check ’n’ Crash [2], and DSD-Crasher [3, 4]. Some of
these tools have been widely used in the research community. A major feature
of our approach is an emphasis on reducing false bug warnings, rather than
on enabling more bug reports. This emphasis informs many of the design and
implementation choices in these tools.

Specifically, we use a static analysis based on symbolic reasoning as a central
piece of our approach. Program effects are represented as logic sentences, and
a reasoning engine attempts to discover all violations of correctness properties
by producing the full space of preconditions for each undesirable state. Left on
its own, this analysis would produce false error reports of two different kinds.
First, some reports would be unsound: they do not correspond to reproducible
bugs but are due to the abstraction techniques of our symbolic reasoning. For

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 7–8, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

8 Y. Smaragdakis

instance, if our symbolic reasoning engine cannot establish true properties of
arithmetic expressions, it is likely to report errors where none exist. A second
kind of false error report is due to reasoning about a program (or a program
module) in isolation, without taking into account conditions established by its
environment. In order to filter out these two kinds of false error reports, we
employ two different dynamic analysis approaches. To address the first kind
of false report, we attempt to produce concrete examples demonstrating each
reported error. The examples are then executed and we dynamically observe if
the predicted violation truly occurs, in which case it is reported to the user. To
address the second kind of false report, a dynamic invariant inference step tries
to “read the programmer’s mind” and establish preconditions of a program or a
module based on existing regression test inputs. This directs the static analysis
to only report problems consistent with the preconditions.

This chain of analyses is promising and our current tool instantiation is an
early but far from perfect representative of the approach. Several conceptual
research problems arise in this process. Some correspond to established research
directions (e.g., counterexample generation, general constraint solving). Others
have to do with addressing the impedance mismatch between analyses (e.g., in-
ferred invariants often need to satisfy consistency properties, such as behavioral
subtyping, or they result in contradictions when supplied as facts to a symbolic
reasoning engine). In the talk, we discuss in detail one specific research direc-
tion, which also represents our latest work: The use of symbolic execution in
combination with dynamic execution of a program, for the purpose of invariant
inference, as represented by the DySy tool [5].

References

[1] Csallner, C., Smaragdakis, Y.: JCrasher: An automatic robustness tester for Java.
Software—Practice & Experience 34(11), 1025–1050 (2004)

[2] Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining static checking and
testing. In: Proc. 27th International Conference on Software Engineering (ICSE),
May 2005, pp. 422–431. ACM, New York (2005)

[3] Csallner, C., Smaragdakis, Y.: DSD-Crasher: A hybrid analysis tool for bug find-
ing. In: Proc. ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), July 2006, pp. 245–254. ACM, New York (2006)

[4] Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool
for bug finding. ACM Transactions on Software Engineering and Methodologies
(TOSEM) 17(2) (April 2008)

[5] Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: Dynamic symbolic execution for
invariant inference. In: International Conference on Software Engineering (ICSE)
(May 2008)

Using Dynamic Symbolic Execution
to Improve Deductive Verification

Dries Vanoverberghe, Nikolaj Bjørner, Jonathan de Halleux, Wolfram Schulte,
and Nikolai Tillmann

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

{t-drivan�,nbjorner,jhalleux,schulte,nikolait}@microsoft.com

Abstract. One of the most challenging problems in deductive program verifica-
tion is to find inductive program invariants typically expressed using quantifiers.
With strong-enough invariants, existing provers can often prove that a program
satisfies its specification. However, provers by themselves do not find such in-
variants. We propose to automatically generate executable test cases from failed
proof attempts using dynamic symbolic execution by exploring program code as
well as contracts with quantifiers. A developer can analyze the test cases with a
traditional debugger to determine the cause of the error; the developer may then
correct the program or the contracts and repeat the process.

1 Introduction

Many modern specification and verification systems such as Spec# [3], JML [25] and so
forth, use a design-by-contract approach [27], where the specification language is typ-
ically an extension of the underlying programming language. The verification of these
contracts often uses verification condition generation (VCG). The verification condi-
tions are first-order logical formulas whose validity implies the correctness of the pro-
gram. The formulas are then fed to interactive or automatic theorem provers.

In practice, there are two limitations of this VCG and proving approach. First, most
program verification tools do not by themselves produce sufficiently strong contracts.
Such contracts need to be crafted or synthesized independently, usually by a human
being. Second, if the program verification tool fails to prove the desired properties, then
discovering the mismatch between the contracts and the code, or why the contracts were
not strong enough, remains a difficult task. In practice, the program verification tools
offer only little help.

Most of the above mentioned program verification tools employ an automated solver
to prove program properties. These solvers must typically be able to handle a combina-
tion of domains, such as integers, bit-vectors, arrays, heaps, and data-types, which are
often found in programming languages. In addition most interesting contracts involv-
ing functional correctness and the heap involve quantifiers, which solvers must reason
about, as well. Solvers, that combine various theories are called SMT (Satisfiability
Modulo Theories). Such solvers have recently gained a lot of attention, see for instance

� Permanent email address: Dries.Vanoverberghe@cs.kuleuven.be

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 9–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

10 D. Vanoverberghe et al.

Simplify [16], CVC3 [4], Fx7 [28], Verifun [19], Yices [18], and Z3 [15]. To support
quantifiers, a commonly used technique for SMT solvers is to use pattern matching
to determine relevant quantifier instantiations. Pattern matching happens inside of the
solver on top of the generated verification condition. When a proof attempt fails, pin-
pointing the insufficient annotation within the context of the SMT solver is obscured by
the indirection from the program itself. To give good feedback to the developer in such
a case, the SMT solver should provide a human-readable counter-example, i.e. a model
of the failed proof attempt. However, producing (informative) models from quantified
formulas remains an open research challenge. Producing models for quantifier-free for-
mulas, is on the other hand easy and relatively well understood.

Symbolic execution [24] is a well-known technique to generate test cases. In partic-
ular, test cases that expose errors help a developer in debugging problems. Symbolic
execution analyzes individual execution traces, where each trace is characterized by a
path condition, which describes an equivalence class of test inputs. A constraint solver
is used to decide the feasibility of path conditions, and to obtain concrete test inputs as
representatives of individual execution paths. Note that constraints can also be solved by
SMT solvers with model generation capabilities. Recently symbolic execution has been
extended to deal with contracts, even contracts involving quantifiers over (sufficiently
small) finite domains [30].

In this paper, we propose an extension of symbolic execution for programs involving
contracts with quantifiers over very large, and potentially unbounded domains. This is
of benefit for debugging failed proof attempts. If a deductive proof fails due to insuf-
ficient quantified assertions, we use symbolic execution to generate concrete test cases
that exhibit mismatches between the program and its contracts with quantifiers. Quan-
tifiers are furthermore instantiated using symbolic values encountered during a set of
exhibited runs. In this setting, quantifier instantiation is limited to values supplied to or
produced by a symbolic execution. With a sufficient set of instances, we can derive test
cases that directly witness limitations of the auxiliary assertions. The SMT solver no
longer needs to handle these quantifiers.

In particular, we handle branch conditions with quantifiers as follows: When a branch
condition of the program involves an unbounded universal quantifier, we first recover
the quantified formula φ(x) (which must be embedded by the compiler into the code),
we introduce a Boolean variable t that represents whether the quantifier holds, and we
introduce a branch in the program over t. Conceptually, program execution forks at this
branch. If t = false, we introduce another additional test input c that represents the
bound variable, and explore the quantified formula until we find a c such that ¬φ(c),
If t = true, then we proceed with the program. Quantifier instantiations are identified
lazily using pattern matching over the symbolic trace.

An extended form of pattern matching, called E-matching [12], is used for instantiat-
ing quantifiers in SMT solvers. E-matching admits matching modulo a set of equalities.
We lift E-matching to combine run-time information with symbolic execution. To this
end, we use dynamic symbolic execution, which executes the program for particular
test inputs in order to obtain derived run-time values. Run-time values are used to de-
termine which symbolic terms may be equal. Thus, pattern matching is performed on the

Using Dynamic Symbolic Execution to Improve Deductive Verification 11

Algorithm 2.1. Dynamic symbolic execution

Set J := false intuitively, J is the set of already...
loop ...analyzed program inputs

Choose program input i such that ¬J(i) stop if no such i can be found
Output i
Execute P (i); record path condition C in particular, C(i) holds
Set J := J ∨ C

end loop

symbolic trace, where concrete run-time values are used to supply a set of alternative
views of values appearing in a trace.

We implemented a prototype of our approach as an extension to the dynamic sym-
bolic execution platform Pex [34,32] for .NET, which we develop at Microsoft Re-
search. Pex contains a complete symbolic interpreter for safe programs that run in the
.NET virtual machine. Pex uses Z3 [15,14] as a constraint solver, using Z3’s ability to
compute models for satisfiable constraint systems. Pex has been used within Microsoft
to test core .NET components developed at Microsoft. Pex is integrated with Microsoft
Visual Studio.

The rest of the paper is structured as follows: Section 2 gives an overview of dy-
namic symbolic execution. Section 3 walks through a simple example of how our ap-
proach generates test cases for a program with contracts involving quantifiers. Section 4
describes in detail how we extend dynamic symbolic execution to handle quantifiers.
Section 5 discusses related work. Section 6 concludes.

2 Dynamic Symbolic Execution

2.1 Introduction

Dynamic symbolic execution [22,5] is a variation of conventional static symbolic ex-
ecution [24]. Dynamic symbolic execution consists in executing the program, starting
with arbitrary inputs, while performing a symbolic execution in parallel to collect sym-
bolic constraints on inputs obtained from predicates in branch statements along the
execution. Then a constraint solver is used to compute variations of the previous inputs
in order to steer future program executions along different execution paths. In this way,
all execution paths will be exercised eventually.

Algorithm 2.1 shows the general dynamic symbolic execution algorithm.
The advantage of dynamic symbolic execution over static symbolic execution is that

the abstraction of execution paths can leverage observations from concrete executions,
and not all operations must be expressed and reasoned about symbolically. Using con-
crete observations for some values instead of fully symbolic representations leads to
an under-approximation of the set of feasible execution paths, which is appropriate for
testing. Such cases can be detected, e.g. when a function is called that is defined outside
of the scope of the analysis. Our tool reports them to the user.

12 D. Vanoverberghe et al.

2.2 Symbolic State Representation

In concrete execution, the program’s state is given by a mapping from program variables
to concrete values, such as 32 or 64-bit integers and heap-allocated (object) pointers.
In symbolic execution, the state is a mapping from program variables to terms built
over symbolic input values, together with a predicate over symbolic input values, the
so-called path condition.

The terms represent symbolically which computations were performed over the sym-
bolic inputs. For example, if x, y, z are the symbolic inputs for the program variables x,
y, z, then the statement

u = x * (y + z);

causes the program variable u to be mapped to the term x ∗ (y + z). If the concrete
inputs for x, y, z are 2, 3, and 4, respectively, then the concrete value of u will be 14.

The path condition is the conjunction of all the guards of all conditional branches that
were performed to reach a particular point in an execution trace. For example, when the
function

void foo(int x) {
if (x>0) {

int y = x*x;
if (y==0) {

// target
}

}
}

reaches the target, then the path condition consists of two conjuncts, (x > 0) and
(x ∗ x == 0). Note that the symbolic state is always expressed in terms of the sym-
bolic input values, that is why the value of the local variable y was expressed with the
symbolic input x.

2.3 Test Inputs and Non-deterministic Programs

Dynamic symbolic execution determines a set of concrete test inputs for a program. In
practice, this means that we determine parameter values for a designed top-level func-
tion. In addition to the immediate parameter values, our dynamic symbolic execution
platform Pex [34] allows the code-under-test to call the generic functionChoose in order
to obtain an additional test input. In C# syntax, the function has the following signature:

T Choose<T>();

Each invocation of this function along an execution trace provides the program with
a distinct additional symbolic test input. In the following, we will also refer to the
functions ChooseTruth and ChooseBoundVariable. They work just as Choose, and
their main purpose is to easily distinguish between different choices.

2.4 Making Basic Contracts Executable

Most design-by-contract languages support function pre-conditions and post-conditions,
class invariants and loop invariants. In the following, we describe how most contracts

Using Dynamic Symbolic Execution to Improve Deductive Verification 13

Program 2.1. Implementation of Assume and Assert in C# syntax

void Assume(bool b) {
if (!b) throw new AssumptionException();

}
void Assert(bool b) {

if (!b) throw new AssertionException();
}

can be turned into executable code using Assert and Assume. This code can then be
explored by symbolic execution.

As shown in Program 2.1, the Assume and Assert functions contain a conditional
branch over their Boolean parameter, and they throw an exception when the argument
is false. An AssumptionException is treated by the symbolic execution engine as
a filter: test inputs that cause this exception to be thrown are not shown to the user. An
AssertException indicates an error, since a mismatch between the program under
test and its contracts has been found. Test inputs that cause this exception are shown to
the user.

We reduce a class invariant to both a pre- and post-condition of each affected function
(see e.g. [27]), and a loop invariant to a call to an Assert function with the positive
condition at the loop entry and with the negative condition at the loop exit. Given a
designated top-level function to explore, we turn its pre-conditions into calls to the
Assume function, and all pre-conditions of called functions into calls of the Assert

function which are placed at the beginning of the functions. We turn all post-conditions
into calls to the Assert function which are placed at the end of the function. We discuss
the treatment of universal quantifiers in depth in Section 4.

3 Example

Program 3.1 shows an implementation of a swap function. In this example we use C#
syntax extended with pre-conditions and post-conditions (requires and ensures),
and old expressions.1 It has two pre-conditions: the array a must not be null, and
the indices must be within the bounds of the array. The three post-conditions express
that the elements at index lo and hi in the array a are swapped, and that all remaining
elements of the array are identical to the old elements in the array. (Note that the last if
statement introduces an error into program.)

Program 3.2 shows the translation of the swap function, including its pre and post-
condition as described in 2.4. The old expression is realized by creating a copy of
the referenced values in the initial state. The Forall<int>(i => p(i)) expression
refers to a generic function Forall that takes a predicate expression p(i) as an argu-
ment. Intuitively, it represents ∀i.p(i). shows the translated program.

1 In fact, the syntax we use is Spec# [3], except for our Forall function that does not involve
bounds. In contrast, the universal quantifier in Spec# must state a finite enumeration of possible
values for the bound variable.

14 D. Vanoverberghe et al.

Program 3.1. Swap Example

public void Swap(byte[] a, int lo, int hi)
requires a != null;
requires 0 <= lo && lo <= hi && hi < a.Length;

ensures a[hi] == old(a[lo]);
ensures a[lo] == old(a[hi]);
ensures Forall<int>(i =>

!(i >= 0 && i < a.Length && i !=lo && i !=hi)
|| a[i] == old(a[i]));

{
byte tmp = a[hi];
a[hi] = a[lo];
a[lo] = tmp;
if (lo != 0 && hi != 0)

a[0] = 42;
}

When symbolic execution of this program reaches the Assert(Forall(...))

statement, our treatment of the quantifier (that we describe in detail in Section 4) will
consider the case in which the quantifier does not hold. To this end, our technique ex-
plores the body of the quantifier using symbolic execution with the intention to find test
inputs that make the asserted quantifier true and false.

Case 1: Let’s assume the quantifier does not hold. The following code snippet rep-
resents a test case that was generated during the search.

IPexOracleRecorder oracle = PexOracle.NewTest();
oracle.OnComprehension(0)

.ChooseTruth(false)

.ChooseBoundVariable(1610612732);
byte[] bs0 = new byte[2];
TestSwap2(bs0, 1, 1);

In this code, oracle is initialized by a call to OnComprehension, which indicates
which quantifier is about to be initialized (here, 0 indicates that it is the first quantifier
in the execution trace). Calls to ChooseTruth and ChooseBoundVariable, set the
truth value of the quantifier and the value of the bound variable (in this case, the truth
value false indicates that the quantifier should not hold, and the bound variable i gets
the value 1610612732). The argument for the parameter a is an array of size 2, so
the index i, chosen earlier, is outside of the range of the array. With these assignments
the body of the quantifier evaluates to true. Since we are looking for a case where
the quantifier does not hold, these test inputs get pruned and the search for a counter-
example continues.

When the exploration finds the case in which i is zero, it discovers that the body of
the quantifier evaluates to false. In this case, the Assert statement fails and a failing
test case has been found:

Using Dynamic Symbolic Execution to Improve Deductive Verification 15

Program 3.2. Translated Swap Example

public void Swap(byte[] a, int lo, int hi) {
Assume(a != null);
Assume(0 <= lo && lo <= hi && hi < a.Length);
byte[] old_a = a.Clone();

byte tmp = a[hi];
a[hi] = a[lo];
a[lo] = tmp;
if (lo != 0 && hi != 0)

a[0] = 42;

Assert(a[hi] == old_a[lo]);
Assert(a[lo] == old_a[hi]);
Assert(Forall<int>(i =>

!(i >= 0 && i < a.Length && i != lo && i !=hi)
|| a[i] == old_a[i]));

}

IPexOracleRecorder oracle = PexOracle.NewTest();
oracle.OnComprehension(0)

.ChooseTruth(false)

.ChooseBoundVariable(0);
byte[] bs0 = new byte[3];
TestSwap2(bs0, 1, 2);

Case 2: Let’s assume the quantifier holds. In this case, the quantifier is instantiated
lazily using pattern matching when relevant constraints become available. The execu-
tion continues normally at first. Whenever the program tries to observe a value that
should not exist according to the asserted quantifier, the path will be pruned. For exam-
ple, suppose that we add the code in Program 3.3 at the end of Program 3.2.

In this case, the code checks if the value of a at an arbitrary index j satisfying j>=0
&& j < a.Length && lo != j && hi != j is still equal to its old value.

At this point our pattern matching engine will detect a match with the quantifier, and
thus the engine instantiates the quantifier. However, the instantiated quantifier together
with the current path condition is unsatisfiable. We detect that the path is infeasible,
stop its execution, and prune the path. The Assert(false) statement will never be
executed.

The following code snippet shows a test case for which the quantifier holds:

IPexOracleRecorder oracle = PexOracle.NewTest();
oracle.OnComprehension(0)

.ChooseTruth(true);
byte[] bs0 = new byte[3];
TestSwap2(bs0, 1, 2);

16 D. Vanoverberghe et al.

Program 3.3. Extra code

int j = Choose<int>();
if (j>=0 && j < a.Length &&

lo != j && hi != j && a[j] != old(a[j]))
Assert(false);

Fig. 1. Example Report of Pex

When exploring the if statement of Program 3.3, the exploration observes the term
a[j]. Since this term matches with a subterm of the quantifier body, the body of
the quantifier gets instantiated and added as an extra constraint (!(j >= 0 && j <

a.Length && j != lo && j != hi) || a[j] == old(a[j])). After entering
the body of the if test, we know that the left disjunct of this constraint is false,
the right disjunct is true. This contradicts the if test that a[j] == old(a[j]) and
therefore this path is infeasible.

Figure 1 shows a partial report that is the result of running Pex on the example
(including the extra code). The failing test is the same as the one we discussed earlier.

Using Dynamic Symbolic Execution to Improve Deductive Verification 17

4 Quantifiers

4.1 Introduction

Universal and existential quantifiers are a noteworthy example of an extension of a pro-
gramming language to support design-by-contract specifications. To make quantifiers
executable, existing approaches typically require the bound variables to be in a range
or from a set. A significant drawback is that executing these quantifiers for all elements
within a range is often impractical. For instance, a contract that involves bound vari-
ables that ranges over all records in a database or over all 64-bit integers will require
significant resources and be impractical to check repeatedly at run-time. Our approach
does not require such bounds.

In the following, we assume that the quantifier body is a pure expression, i.e. that
it does not have side-effects. Also, we do not consider nested quantifiers, and leave it
for future work to explore several alternative ways of handling nested quantifiers (such
as, relying on the SMT solver for these, using prenex forms, or executing the body in a
separate run so that we can apply the techniques recursively).

4.2 Compiling a Quantifier to a Non-deterministic Program

We describe how quantifiers within contracts can be transformed into executable, non-
deterministic code. We focus on the treatment of universal quantifiers. Since ∃x.ϕ(x)
is equivalent to ¬∀ x.¬ϕ(x), we can use the same approach for existential quantifiers.

Program 4.1 shows the executable version of a universal quantifier. It is implemented
as a library function Forall<T> where T is the type of the bound variable. It takes
the body of the quantifiers as input as a predicate p (Predicate<T> is the type of a
function which takes an input of type T and returns a Boolean value).

Program 4.1. Executable Version of Universal Quantifier

bool Forall<T>(Predicate<T> p) {
bool q_holds = ChooseTruth<bool>();
if (q_holds) { // Quantifier holds

AssumeForall<T>(p);
} else { // Quantifier does not hold.

T val = ChooseBoundVariable<T>();
Assume(!p(val));

}
return q_holds;

}

The implementation first obtains a value by calling ChooseTruth and stores it in
the variable q_holds. The value represents whether the quantifier holds. The imple-
mentation branches over this value. This is a non-deterministic choice.

18 D. Vanoverberghe et al.

Case 1: When q_holds is true. In this case, the rest of the computation should
assume that the quantifier indeed is true for all values. This is represented by a call
to the function AssumeForall<T>(p), which we will explain in detail in Section 4.3.
In a nutshell, the quantifier is added to a list of active quantifiers, and the symbolic
execution engine will look out for relevant values that appear in the program.

For all such relevant values v1, . . . , vn, the instantiated quantifier p(vi) represents
a condition that the test inputs must fulfill. All execution paths in which the quantifier
does not hold for these values will be cut off.

In other words, the statement

AssumeForall<T>(p);

conceptually just represents a set of statements

Assume(p(v1));
Assume(p(v2));
...
Assume(p(vn));

for all relevant values v1, . . . , vn.
However, since the relevant values might only be discovered as the program execu-

tion continues, these additional Assume(p(...)) clauses are realized by our symbolic
execution engine.

Case 2: When q_holds is false. In this case, the implementation will attempt to
obtain a value val for which the predicate p is false. This is realized by performing
another non-deterministic choice to obtain a value val, checking whether the predicate
holds on that value, and pruning all execution paths where p(val) did not hold by
calling Assume(!p(val)). The underlying dynamic symbolic execution engine will
attempt to obtain values for val such that the execution proceeds beyond the call to
Assume. When no such value is found, all execution paths starting from the assumption
that q_holds is false will be effectively cut off.

Illustration. Figure 2 shows an execution tree for evaluating a quantifier whose
branches represent the choices introduced by the ChooseTruth and ChooseBound-

Variable functions. The first node with the outgoing branches false and true rep-
resents the program branch over q_holds. If q_holds is true, the predicate p(i) is
added to the list of quantifiers; If q_holds is false, the body of the quantifier p is
explored in order to find a value for which the predicate does not hold.

4.3 Pattern Based Quantifier Instantiation

SMT solvers based on integrations of modern sat-solving techniques [20], theory lem-
mas and theory combination [13] have proven highly scalable, efficient and suitable
for integrating theory reasoning. However, numerous applications from program anal-
ysis and verification require furthermore to handle proof-obligations involving quan-
tifiers. As we notice here, quantifiers are often used for capturing frame conditions
over loops, summarizing auxiliary invariants over heaps. Quantifiers can also be used

Using Dynamic Symbolic Execution to Improve Deductive Verification 19

Fig. 2. Example Exploration Tree

for supplying axioms of theories that are not already equipped with solvers. A well
known approach for incorporating quantifier reasoning with ground decision proce-
dures uses an E-matching algorithm that works with the set of ground equalities as-
serted during search to instantiate bound variables. The ground equalities are stored
in a data-structure called an E-graph. E-matching is used in several theorem provers:
Simplify [16], CVC3 [4], Fx7 [28], Verifun [19], Yices [18], Zap [2], and Z3 [12].

We will now describe the quantifier instantiation process and E-matching problem in
more detail.

Quantifiers and SAT-Solvers. Suppose ϕ is a quantifier free formula we wish to show
unsatisfiable (conversely ¬ϕ is valid), then ϕ can be converted into an equi-satisfiable
set of clauses [35] of the form (�1∨ �2∨ �2)∧ (�4 ∨ . . .)∧ . . ., where each literal �i is an
atom or a negation of an atom, each atom is either an equality t � s, a predicate symbol
P , or some other relation applied to ground arguments. Then SAT solving techniques
are used for searching through truth assignments to the atoms [29]. An equality t � s
assigned to true cause as a side-effect a partition of ground terms in the E-graph for ϕ to
be collapsed. When an equality t � s is assigned to false, the theory solvers check that
s and t do not appear in the same partition; otherwise, the assignment is contradictory.
If ϕ contains quantifiers, then quantified sub-formulas are treated as atomic predicates.
Thus, if ϕ contains a sub-formula of the form ∀x.ψ, then this sub-formula is first re-
placed by a predicate p∀x.ψ. The SAT solver core, and the E-graph structure can then
work in tandem to find a satisfying assignment to ϕ [∀x.ψ ← p∀x.ψ]. Suppose first the
SAT solver core chooses to set p∀x.ψ to false; it means that under the current assign-
ment of truth values to sub-formulas of ϕ, it must be the case that ¬∀x.ψ, or in other
words, there is some (Skolem) constant sk, such that ¬ψ[x ← sk]. Thus we may add
the additional fact

¬p∀x.ψ → ¬ψ[x ← sk]

20 D. Vanoverberghe et al.

to ϕ, propagate the truth assignment for p∀x.φ, and have the resulting formula ¬ψ[x ←
sk] participate in subsequent search. Conversely, if the SAT solver core chooses to
set p∀x.ψ to true, then for the assignment to be consistent with ϕ, it must be the case
that ∀x.ψ. In this case, φ holds for every instantiation of x. We will later describe
how suitable instantiations for x are determined, but suppose for a moment that an
instantiation t1 is identified. We can then add the following fact to ϕ

p∀x.ψ → ψ[x← t1]

while maintaining satisfiability, and use the current truth-assignment to propagate the
instantiation.

The E-matching Problem. As mentioned above, a widely used algorithmic component
for finding suitable instantiations consists of an E-matching algorithm. The E-matching
problem is more precisely defined as: Given a set of ground equations E, where E is a
set of the form {t1 � s1, t2 � s2, . . .}, a ground term t and a term p possibly containing
variables. Provide the set of substitutions θ, modulo E, over the variables in p, such that
E |= t � θ(p). Two substitutions are equivalent if their right hand sides are pairwise
congruent modulo E.

When solving the E-matching problem, it is common to build a congruence closure
based on the equalities in E. The congruence closure partitions terms in E and ground
sub-terms from p and t; it is the least partition (≡C) closed under equivalence (reflexiv-
ity, symmetry, and transitivity), and functionality: if t1 ≡C s1, t2 ≡C s2, and f(t1, t2),
and f(s1, s2) are sub-terms, then f(t1, t2) ≡C f(s1, s2). Efficient implementations of
congruence closure typically use union-find data-structures and use-lists [17]. A con-
gruence closure is the finest partition induced by the equalities E.

The E-matching problem is NP-complete, but in the context of SMT problems the
harder practical problem is to handle a massive number of patterns and a dynamically
changing set of patterns and equalities E. Efficient data-structures and algorithms for
these situations are described in [12].

Patterns. So what do we E-match against? For most practical purposes, the answer is
a set of sub-terms in the quantified formula (from the above example, ψ) that contain
the bound variables (from the above example, the variable x).

Example 1. Consider one of the axioms used for characterizing arrays [26]:

∀a, i, j, v . i �� j → read(write(a, i, v), j) � read(a, j) .

When should it be instantiated? One clear case is when the sub-term read(write(a, i, v),
j) matches a term in set of current ground terms. A less obvious case is when both
write(a, i, v) and read(a, j) occur as terms. These terms combined contain all bound
variables, so they can be used for instantiating the quantifier. The latter condition refers
to two occurrences of a. These two occurrences can match any pair of terms in the
current context as long as they belong to the same equality partition.

In Simplify [16], such patterns are annotated together with the quantifier.

∀a, i, j, v . (PATS read(write(a, i, v), j) (MPAT write(a, i, v) read(a, j))) :
i �� j → read(write(a, i, v), j) � read(a, j) .

Using Dynamic Symbolic Execution to Improve Deductive Verification 21

We here perform a partial lifting of the concept of patterns to the context of C#
programs.

Example 2. A contract that assumes the array a to be 0 on every index i can be formu-
lated as:

Assume(Forall<int>(i =>
!(i >= 0 && i < a.Length)
|| Pattern<int>(a[i]) == 0));

In this contract we have used the generic function:

T Pattern<T>(T value);

The pattern specifies that the quantifier on i be instantiated whenever a sub-term of
the form a[i] is created during search. Multiple occurrences of Pattern are treated as
alternatives. Our pattern extension in Pex does not currently provide a counter-part to
multi-patterns (conceptually it is a relatively easy extension, that has yet to be exercised:
add a numeric argument to Pattern, all occurrences using the same numeral argument
belong to the same multi-pattern).

Note that this does not directly limit the set of values for instantiating the quantifier.
There are still 232 or 264 possible values of the type int to instantiate the quantifier.
Operationally, the Pattern function implements the identity function.

4.4 Run-Time-Guided Pattern Matching

As we outlined, modern SMT solvers use E-matching for instantiating patterns. E-
matching uses congruence relations between ground terms. During search for unsat-
isfiability or satisfiability, congruence relations encode equalities that hold under all
possible interpretations of the current state of the search. We will here deviate from this
use of congruence relations for finding pattern matches. The basic observation is that,
instead of searching through a set of different congruence relations, we use the model
produced by a concrete execution for identifying a (coarse) partition of terms appear-
ing in the corresponding symbolic trace. Two terms in a symbolic trace are treated as
potentially equal if their run-time values are equal. E-matching can now be replaced
by a pattern matching function that uses run-time values. We call this version the M-
matching problem, where M refers to a model. The M-matching problem is more
precisely, given a modelM, that provides an interpretation for a set of terms T , and a
ground term t ∈ T and pattern p; provide the set of substitutions θ mapping variables in
p to terms in T , such thatM |= t � θ(p). Notice thatM-matching is an approximation
of E-matching, since E |= t � θ(p) and M |= E implies that M |= t � θ(p). On
the other hand, M-matching allows going beyond congruences of uninterpreted func-
tion symbols: the model provided by a concrete run provides interpretations to arbitrary
functions. M-matching may be implemented in a way similar to E-matching, using
code-trees [12], but using a modelM instead of relying on a congruence closure.

The main steps used by theM-matching algorithm are summarized below.

1. Let T be the set of all terms appearing in a symbolic state.
2. Let p be a pattern we wish to match with terms in T .

22 D. Vanoverberghe et al.

3. Recursively, match function symbols used in p with all possible matching symbols
from T . For example, if p is of the form f(p1, p2), then select every occurrence of
f(t1, t2) in T and create the sub-matching problems p1, t1 and p2, t2.

4. If, in the recursive matching step, pi is ground, then check if the matching terms
pMi equals tMi . If, pi is a bound variable x, then bind the value tMi to x if x has not
been bound before. If x was bound before to tMj , then check tMi = tMj .

A match succeeds if the concrete run-time values coincide. The symbolic represen-
tations may be different, but the use of run-time values ensures that every match that
may be valid at a give execution point is found by using the run-time values. Thus,
this process may be used for supplying a superset of useful values for parameters to
quantified contracts. Our method restricts quantifier instantiation to observed values.
Symbolic values that are not observed are don’t cares from the point of view of the
program under test, so we admit test inputs that violate contracts on unobserved values.

Example 3. Suppose we seek to match a pattern of the form:

w ∗ ((w + u) + V)

where w is an identifier used in a program and V is the bound variable of a quantifier.
Consider the program fragment:

y = u + 4;
w = 4;
if (x == y - u) {

u = x * (y + z);
. . .

}

We match the pattern w ∗ ((w + u) + V) against the term x ∗ ((u + 4) + z) which
got built by expanding the assignment to y by u + 4. Matching proceeds by following
the structure of the pattern:

Match(w ∗ ((w + u) + V), x ∗ ((u + 4) + z)) =
Match(w, x) and
Match(((w + u) + V), ((u + 4) + z))

Since the pattern occurs only under the if-condition (x == y − u) it must be the case
that the run-time value of both x and w is 4. So by using the run-time values, the first
match reduces to

Match(4, 4)

which holds. The second call to Match reduces to:

Match((w + u), (u + 4))
Match(V, z)

Where the first matching obligation can be solved by looking at the run-time values of
w and u:

Using Dynamic Symbolic Execution to Improve Deductive Verification 23

Match(8, 8)

The second matching obligation binds the variable V to z.

Models induced by run-time values will produce a possibly coarser partition than a
corresponding congruence closure, so more terms may be identified as matches than
really exist. We can compensate for the approximation by adding a side-condition to
the instantiated quantifier. Namely, if

∀x . pat(x) : φ(x)

is a quantifier with bound variable x and pattern pat(x), and the symbolic term t is
identified as a run-time match of pat(x), with the instantiation x ← s, then we can
create the instantiated formula:

pat(s) � t→ φ(s)

5 Related Work

Automated testing has been used in the past to guide the refinement of invariants when
proof attempts fail [11], however their work was not applied to design-by-contract
specifications.

The use of specifications as test oracle to decide the result for a particular test case is
a well-known technique. This idea was first explored by Peters and Parnas [31]. Many
approaches have followed this technique to run-time check design-by-contract specifi-
cations for JML [6], Eiffel [27] and Spec# [3]. Design-by-contract specifications have
also been used for test generation using more or less random approaches to the test in-
put generation problem, e.g. for JML [8,7] and Eiffel [9,10]. Notably, their approaches
do not handle unbounded quantifiers. Unlike existing approaches, we provide a way to
evaluate unbounded quantifiers (or quantifiers over an impractically large domain).

The idea of symbolic execution was pioneered by [24]. Dynamic symbolic execution
was first suggested in DART [22]. Their tool analyzes C programs. Several related ap-
proaches followed [33,5,23]. They differ between each other in the extent of how much
concrete information is lifted in the analysis and how much is treated symbolically, i.e.
the extent of the under-approximation that they perform. We describe how to extend
dynamic symbolic execution with a symbolic treatment of quantifiers.

Contracts can be used to make dynamic symbolic execution more modular and thus
scalable [30]. Several attempts have been made to even infer such contracts dynami-
cally [21,1].

Our approach relies on using the SMT solver Z3 to generate inputs that drive a pro-
gram into its different reachable configurations. An overview of related work on E-
matching is detailed in [12].

6 Conclusion

This paper described an approach for using dynamic testing for debugging deductive
verification of contracts with quantifiers. We extended symbolic execution to handle

24 D. Vanoverberghe et al.

unbounded quantifiers. We translated quantifiers to non-deterministic programs and in-
troduced M-matching as a technique for finding quantifier instances among symbolic
values exercised in a run. Future work includes assessing scalability and the coverage
exercised by the quantifier instances.

Acknowledgments

We would like to thank Ernie Cohen, Herman Venter, and Songtao Xia for the discus-
sions and their support.

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic execution.
In: Proc. of TACAS 2008. LNCS, vol. 4963, pp. 367–381. Springer, Heidelberg (2008)

2. Ball, T., Lahiri, S.K., Musuvathi, M.: Zap: Automated theorem proving for software analy-
sis. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 2–22.
Springer, Heidelberg (2005)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automatically gener-
ating inputs of death. In: CCS 2006: Proceedings of the 13th ACM conference on Computer
and communications security, pp. 322–335. ACM Press, New York (2006)

6. Cheon, Y.: A runtime assertion checker for the Java Modeling Language. Technical Report
03-09, Department of Computer Science, Iowa State University, The author’s Ph.D. disserta-
tion. (April 2003), http://archives.cs.iastate.edu

7. Cheon, Y.: Automated random testing to detect specification-code inconsistencies. Techni-
cal report, Department of Computer Science The University of Texas at El Paso, 500 West
University Avenue, El Paso, Texas, USA (2007)

8. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The JML and
JUnit way. In: Proc. 16th European Conference Object-Oriented Programming, pp. 231–255
(June 2002)

9. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Experimental assessment of random testing for
object-oriented software. In: ISSTA 2007: Proceedings of the 2007 international symposium
on Software testing and analysis, pp. 84–94. ACM, New York (2007)

10. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Artoo: adaptive random testing for object-
oriented software. In: ICSE 2008: Proceedings of the 30th international conference on Soft-
ware engineering, pp. 71–80. ACM, New York (2008)

11. Claessen, K., Svensson, H.: Finding counter examples in induction proofs. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 48–65. Springer, Heidelberg (2008)

12. de Moura, L., Bjørner, N.: Efficient E-matching for SMT Solvers. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)

13. de Moura, L., Bjørner, N.: Model-based Theory Combination. Electron. Notes Theor. Com-
put. Sci. 198(2), 37–49 (2008)

14. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver (2007),
http://research.microsoft.com/projects/Z3

http://archives.cs.iastate.edu
http://research.microsoft.com/projects/Z3

Using Dynamic Symbolic Execution to Improve Deductive Verification 25

15. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963. Springer, Heidelberg (2008)

16. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3), 365–473 (2005)

17. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J.
ACM 27(4), 758–771 (1980)

18. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

19. Flanagan, C., Joshi, R., Saxe, J.B.: An explicating theorem prover for quantified formulas.
Technical Report HPL-2004-199, HP Laboratories, Palo Alto (2004)

20. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Deci-
sion Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188.
Springer, Heidelberg (2004)

21. Godefroid, P.: Compositional dynamic test generation. In: Proc. of POPL 2007, pp. 47–54.
ACM Press, New York (2007)

22. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. SIGPLAN
Notices 40(6), 213–223 (2005)

23. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In: Proceedings of
NDSS 2008 (Network and Distributed Systems Security), pp. 151–166 (2008)

24. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
25. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface

specification language for Java. Technical Report TR 98-06i, Department of Computer Sci-
ence, Iowa State University (June 1998)

26. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress, pp. 21–28
(1962)

27. Meyer, B.: Eiffel: The Language. Prentice Hall, New York (1992)
28. Moskal, M., Lopuszański, J.: Fast quantifier reasoning with lazy proof explication (2006),

http://nemerle.org/malekith/smt/smt-tr-1.pdf
29. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient

SAT solver. In: 38th Design Automation Conference (DAC 2001) (2001)
30. Mouy, P., Marre, B., Williams, N., Gall, P.L.: Generation of all-paths unit test with function

calls. In: Proceedings of ICST 2008 (International Conference on Software Testing, Verifi-
cation and Validation), pp. 32–41 (2008)

31. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documentation. IEEE
Trans. Softw. Eng. 24(3), 161–173 (1998)

32. Pex development team. Pex (2007), http://research.microsoft.com/Pex
33. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Proc. of

ESEC/FSE 2005, pp. 263–272. ACM Press, New York (2005)
34. Tillmann, N., de Halleux, J.: Pex – white box test generation for .NET. In: Proc. of Tests

and Proofs (TAP 2008), Prato, Italy, April 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

35. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of
Reasoning 2: Classical Papers on Computational Logic 1967-1970, pp. 466–483. Springer,
Heidelberg (1983)

http://nemerle.org/malekith/smt/smt-tr-1.pdf
http://research.microsoft.com/Pex

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 26–41, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automated Evaluation of Secure Route Discovery
in MANET Protocols

Todd R. Andel1, * and Alec Yasinsac2, **

1 Air Force Institute Technology, Wright-Patterson AFB, OH, USA
todd.andel@afit.edu

2 University of South Alabama, Mobile, AL, USA
ayasinsac@usouthal.edu

Abstract. Evaluation techniques to analyze security properties in ad hoc routing
protocols generally rely on manual, non-exhaustive approaches. Non-exhaustive
analysis techniques may conclude a protocol is secure, while in reality the proto-
col may contain an unapparent or subtle flaw. Using formalized exhaustive
evaluation techniques to analyze security properties increases protocol confidence.
In this paper, we offer an automated evaluation process to analyze security proper-
ties in the route discovery phase for on-demand source routing protocols. Using
our automated security evaluation process, we are able to produce and analyze all
topologies for a given network size. The individual network topologies are fed
into the SPIN model checker to exhaustively evaluate protocol abstractions
against an attacker attempting to corrupt the route discovery process.

1 Introduction

Mobile ad hoc networks (MANETs) consist of portable wireless nodes that do not use
fixed infrastructure. Unlike their wired counterparts that depend on fixed routers for
network connectivity and message forwarding, MANETs rely on each node to provide
routing functionality. Ad hoc routing protocols allow wireless nodes to communicate
with nodes outside their local transmission distance. MANET routing protocols [1,2,
3,4] commonly utilize two-phased routing approaches in which a route is first discov-
ered during a route discovery phase and data is subsequently forwarded over the dis-
covered route. In order for the protocol to meet its desired goal to deliver messages,
both phases must be secured to protect the protocol against malicious activity.

There are numerous approaches proposed to analyze security properties in
MANET routing protocols. These techniques include visual inspection, network
simulation, analytical proofs, simulatability models, and formal methods [5]. Unfor-
tunately, most MANET literature generally follows unstructured approaches and non-
exhaustive methods to evaluate route security.

 * The views expressed in this article are those of the author and do not reflect the official policy

or position of the United States Air Force, Department of Defense, or the U.S. Government.
** This material is based upon work supported in part by the U.S. Army Research Laboratory

and the U.S. Army Research Office under grants numbered W91NF-04-1-0415.

 Automated Evaluation of Secure Route Discovery in MANET Protocols 27

In this paper, we utilize the formal methods approach through automated model
checking to evaluate the ad hoc route discovery process against route corruption.
Given the network topology, our analysis models exhaustively check all routing com-
binations to evaluate if an attacker can corrupt the route discovery phase by returning
validated routes that are not consistent within the network topology. Our modeled
protocol abstractions employ the SPIN model checker [6] to provide exhaustive
analysis against the specified protocol security property. Although SPIN has been
used to evaluate MANET routing protocol operation (e.g., loop freedom) [7, 8 ,9], to
the best of our knowledge we are the first to use SPIN to evaluate security properties
in ad hoc routing protocols, as presented by our initial work in [10]. This paper ex-
tends our initial work on using SPIN to evaluate MANET route security by adding
additional protocol models, a more advanced attacker model, and provides an auto-
mated process to examine all possible network topologies for a given network size.

In the remainder of this paper, we discuss requirements for secure routing and the
current analysis techniques being used to evaluate secure ad hoc routing protocols.
Our primary contribution is the secure routing model abstraction, attacker abstrac-
tions, and the exhaustive network topology generation and analysis process. We exer-
cise our automated security analysis process to discover an undocumented attack on
the Ariadne [11] protocol and an undocumented attack on the endairA protocol [12].

2 Evaluating Secure Routing

Secure ad hoc routing protocols must be analyzed to ensure their security goals are
met and to identify under what adversarial environments they may fail. We first de-
fine secure routing protocol requirements, discuss the current techniques used to
evaluate MANET security properties, and provide an overview of our exhaustive
analysis approach.

2.1 Requirements for Secure Routing Protocols

The term security protocol customarily refers to an authentication protocol, in which
the goal is to securely share information between two nodes. Security analysis for
authentication protocols evaluates if it is possible for a third party to obtain protected
information, regardless of the communication path [13]. Conversely, security evalua-
tions for MANET secure routing protocols must consider the complete communica-
tion path, or route. In particular, we must consider route accuracy and protocol
reliability.

A routing protocol provides route accuracy if it produces routes that exist within
the current network topology. Route accuracy is an integrity issue, ensuring that an
attacker has not corrupted the path identified during route discovery. Since the routes
obtained during route discovery can fail due to both malicious actions and non-
malicious failures (e.g., mobility, hardware failures, etc.), the routing protocols must
also provide reliability. Once a route fails, reliability mechanisms initiate a new route
discovery process, use a previously found path if multi-path protocols [14, 15] are
being utilized, or may attempt to detect and remove malicious nodes via probing
protocols [16].

28 T.R. Andel and A. Yasinsac

2.2 Current Evaluation Techniques

There are many techniques used to evaluate security properties in MANET routing
protocols. These techniques include visual inspection, network simulation, analytical
methods, simulatability models, and formal methods. Visual inspection, analytical
proofs, and simulatability models are not automated. Visual inspection and network
simulation do not provide exhaustive attacker analysis. Work in [5] provides detailed
analysis on the capabilities and limitations of these analysis methods for use in
MANET environments.

Our research follows the formal methods [17] and automated model checking [18]
paradigms to evaluate route validity for routes returned in on-demand source routing
protocols. Automated formal methods have shown success in evaluating authentica-
tion protocols [19,20,21]. There has also been some initial work [22,23] using
automated formal methods to evaluate MANET route security for ad hoc on-demand
distance vector protocols such as AODV and Secure AODV (SAODV), where the
attacker's goal is to corrupt a node's next-hop entries stored in the node's routing table.
However, the work was isolated to evaluating a few network topologies.

2.3 An Exhaustive Evaluation Approach

Figure 1 illustrates our complete analysis procedure. In the following sections we de-
scribe SPIN model development over the Ariadne and endairA protocols, attacker
development, and our automated process that generates and analyzes all network to-
pologies for a given network size N.

We transform the routing protocol, attacker actions, and security property into a
model abstraction for analysis using the SPIN model checker. SPIN [6] is a general
purpose model checker developed to verify the operation of distributed systems. Once
a protocol abstraction and desired goals are specified in the Promela modeling lan-
guage, SPIN generates a finite state automata (FSA) and performs exhaustive state
analysis to determine if the desired goal holds or is violated. If the system goal is vio-
lated, SPIN generates an event sequence leading to the failure.

SPIN Model

Topology
Generation

Engine

ϕM
Protocol Description

Base Topology

Attacker Actions

Security Property

Evaluation
Engine

BaseModel.pml

*.pml

*.trail

Reporting
Engine

Identified
Topology

&
Attacker Paths

SPIN Model

Topology
Generation

Engine

ϕM
Protocol Description

Base Topology

Attacker Actions

Security Property

Evaluation
Engine

BaseModel.pml

*.pml

*.trail

Reporting
Engine

Identified
Topology

&
Attacker Paths

Fig. 1. Automated Security Analysis Process

 Automated Evaluation of Secure Route Discovery in MANET Protocols 29

A primary factor in choosing SPIN for our research is its success in verifying security
properties in authentication protocols [24] and its previous use to evaluate loop freedom
in MANET routing protocols in non-malicious environments [7, 8, 9]. Our research
combines these areas to analyze security properties in MANET routing protocols.

Additional factors in choosing SPIN include Promela's ability to model message
passing and the ability to model independent distributed processes. These factors allow
us to model the routing process in a MANET environment. Finally, Promela's ability to
code non-deterministic choices allows us to model the wireless message deliverability
environment. Since wireless message deliverability is not guaranteed, an attacker may
be able to inject false routing information in place of dropped messages. For example,
we use the following if construct to model wireless message reception:

if
 :: message received ->
 process message according to protocol
 :: message received ->
 drop message and take no actions
fi .

Since both entry statements are true, then either statement and its corresponding ac-
tions may be non-deterministically chosen during SPIN simulations. During SPIN
exhaustive analysis, all possible non-deterministic choices are examined independ-
ently. Using SPIN in this fashion allows us to model all possible message interactions
to determine if an attack may occur.

3 Model Checking Secure Routing

We focus our model abstraction on the MANET route discovery phase, analyzing if
an attacker can corrupt the path during route discovery. Our model development and
analysis targets source routing protocols, in which routes are explicitly embedded into
protocol messages. We break the model into the three primary processes: the wireless
medium, non-malicious node, and attacker node.

For each primary process, we isolate the model development to focus on malicious
failures. Non-malicious routing failures occur due to mobility or failed nodes, which
affects a protocol's message deliverability and overall protocol performance. Mali-
cious failures may also occur, which to the routing protocol cannot be distinguished
from non-malicious failures.

In addition to the inconclusive results encountered by including non-malicious
failures, modeling non-malicious failures may not be feasible in a finite space model
checker. For example, Wibling et al. [8] evaluate protocol loop freedom and show that
it is not feasible to model mobility in model checking paradigms due to rapid state-
space explosion. While model checkers may encounter the same state-space limita-
tions when isolating malicious failures, modeling only the required failures of interest
reduces the model complexity and increases the chances that the model checker can
evaluate the given security property.

Based on these observations, we focus on modeling malicious failures against se-
cure routing protocols. Eliminating non-malicious failures allows us to effectively
isolate discovered route failures due to malicious activity. Any security flaws which

30 T.R. Andel and A. Yasinsac

may arise due to mobility causing an undelivered message is taken into account by
exhaustively searching for all possible paths in the given topology under analysis,
since transmissions in general cannot be guaranteed in wireless environments.

3.1 Modeling the Wireless Medium

Modeling message transmission in a wireless environment is a significant challenge
for simulating and model checking MANET protocols. When a wireless node trans-
mits a message in a physical MANET implementation, all nodes within its transmis-
sion footprint receive the message virtually simultaneously. Each wireless recipient
then determines if it must process or drop the received packet.

SPIN does not provide direct broadcast communication support; therefore, we model
the required communication components to ensure all neighbor nodes receive the mes-
sage. Since time is implicitly modeled by evaluating all computational possibilities, we
model one hop broadcast messages via multiple unicast messages. In [25], Ruys dis-
cusses how to implement simple broadcast communication via a common bus structure,
a matrix of channels for each node combination, or as a broadcast server process.

We model MANET communication between nodes using a wireless medium
server, similar to Ruys' [25] broadcast server process. By modeling the wireless me-
dium as its own process rather than modeling node-to-node channels or using a vari-
able length bus, we limit the state-space and modularize our approach to eliminate
modeling dependencies based on the network size being evaluated. We model a
node's transmission range by connectivity rather than by distance, by ensuring only
reachable neighbors receive transmitted messages. We store the network topology for
the configuration we are evaluating in a two-dimensional array. Figure 2 illustrates
the associated array for a four node network topology. The model's wireless medium
process uses the array to determine the transmitting node's local neighbors and trans-
mits messages accordingly.

The array consists of N rows by N columns, where N is the total number of non-
malicious nodes plus the total number of malicious nodes. Rows indicate the transmit-
ting node and columns indicate the node's local neighbors. Each array element holds a
Boolean value, with true (or 1) indicating a connection exists between node pairs. The
shaded areas indicate array symmetry in a bidirectional environment.

0

1

2

3

N

N

0

1

2

0
0 1 2

1
0

0 0

1
1

1

1
3

3

0

1

1 1

0

0 0

0

1

2

3

0

1

2

3

N

N

0

1

2

0
0 1 2

1
0

0 0

1
1

1

1
3

3

0

1

1 1

0

0 0

N

N

0

1

2

0
0 1 2

1
0

0 0

1
1

1

1
3

3

0

1

1 1

0

0 0

N

N

0

1

2

0
0 1 2

1
0

0 0

1
1

1

1
3

3

0

1

1 1

0

0 0

Fig. 2. Representing Network Topology

Using the independent wireless medium process with the global connectivity array
allows us to model any MANET routing protocol. However, we tune the wireless me-
dium to model on-demand source routing protocols in order to maintain a reduced
state-space. Our wireless medium server approach delivers broadcast route request

 Automated Evaluation of Secure Route Discovery in MANET Protocols 31

(rreq) messages to each adjacent node. Each recipient node processes the message
and transmits the message to the next hop using the wireless medium server. The uni-
cast route reply (rrep) can use an identical process, with the exception that each node
receiving the message must determine if it is included in the path before retransmit-
ting the message to the next upstream host. In order to limit state-space, the wireless
medium server only transmits to the intended recipient identified in the unicast rrep
message and to all attacker nodes within the current transmission footprint. This
approach reduces state-space yet still captures the protocol's required elements for
security analysis.

3.2 Modeling Source Routing Protocols

MANET two-phased routing protocols can be classified as proactive or reactive. Pro-
active protocols attempt to continuously maintain fresh routes between all source-
destination pairs Reactive protocols establish a route between a source and destination
only when required. Reactive protocols, also known as on-demand protocols, gener-
ally use either distance vector mechanisms or source routing. In on-demand distance
vector protocols, such as AODV, tables are used in each node to direct the next hop to
a given destination. On-demand source routing protocols, such as DSR, explicitly
embed the complete route into each message.

Our research goal is to automate the security analysis process for evaluating rout-
ing attacks against the route discovery phase in on-demand source routing protocols.
In our initial work [10], we modeled the DSR protocol and the SRP extension to DSR.
In this work, we provide models for the Ariadne and endairA security extensions
based on the DSR protocol. Modeling these protocols provided to be more difficult, as
the added security requirements posed additional challenges to ensure the crypto-
graphic primitives were maintained. We make several abstraction choices to simplify
the resulting model and limit the resulting state-space. Model checking over the ab-
straction exhaustively examines all routing possibilities for a static network. Our
model abstraction does not reflect message timing issues, since message deliverability
is not guaranteed in a wireless environment. Our resultant models allow us to search
for possible route violations rather than probable outcomes.

Modeling Ariadne. Ariadne [11] is an extension to the DSR protocol that attempts to
secure the forward rreq from being corrupted by computing a one-way per-hop hash
value at each intermediate node.

The Ariadne message formats follow as:

• <rreq, initiator, target, id, hash_value, accum_path, sig_list>
• <rrep, target, initiator, accum_path, sig_list, target_sig>.

We illustrate the Ariadne protocol using the network topology and messages shown
in Figure 3, with initiator node 0, target node 3, H is a cryptographically secure one-
way hash function, and SKi is node i's signing key.

The hash value (hx) is included to guard against an attacker removing a node from
the embedded path. The initial hash seed is a secret known only to the initiator-target
pair. Each intermediate node adds its id to the route path (accum_path), calculates and
inserts a new per-hop hash value (hash_value), and appends its signature before

32 T.R. Andel and A. Yasinsac

10 32
msg1 msg2 msg3

msg4 msg4 msg4

10 32
msg1msg1 msg2msg2 msg3msg3

msg4msg4 msg4msg4 msg4msg4

msg1 = (rreq, 0, 3, id, h0, (), ())
h0 = H[0, initiator-target secret]

msg2 = (rreq, 0, 3, id, h1, (1), (sig1))
h1 = H[1, h0]
sig1 = SK1{rreq, 0, 3, id, h1, (1)}

msg3 = (rreq, 0, 3, id, h2, (1, 2), (sig1, sig2))
h2 = H[2, h1]
sig2 = SK2{rreq, 0, 3, id, h2, (1, 2), (sig1)}

msg4 = (rrep, 3, 0, (1, 2), (sig1, sig2), (sig3))
sig3 = SK3{rrep, 0, 3, (1, 2), (sig1, sig2)}

msg1 = (rreq, 0, 3, id, h0, (), ())
h0 = H[0, initiator-target secret]

msg2 = (rreq, 0, 3, id, h1, (1), (sig1))
h1 = H[1, h0]
sig1 = SK1{rreq, 0, 3, id, h1, (1)}

msg3 = (rreq, 0, 3, id, h2, (1, 2), (sig1, sig2))
h2 = H[2, h1]
sig2 = SK2{rreq, 0, 3, id, h2, (1, 2), (sig1)}

msg4 = (rrep, 3, 0, (1, 2), (sig1, sig2), (sig3))
sig3 = SK3{rrep, 0, 3, (1, 2), (sig1, sig2)}

Fig. 3. Ariadne Protocol Messages

retransmitting the rreq. In addition to the hash value, each intermediate node com-
putes and appends a signature over the complete packet to make sure the path contains
only trusted insiders. Ariadne allows the signature to be a message authentication
code (MAC) computed with a pairwise secret key, a MAC computed with a the de-
layed key via the TESLA broadcast key distribution scheme, or computed as a digital
signature. For the purposes of model development, we use digital signatures and refer
to node x's signature as sigx.

Once the target receives the rreq, it validates the one-way hash value by iteratively
performing the hash computation against all nodes in the accumulated path. If the rreq
validates, the target signs the path and returns the path and signature in a rrep. During
the rrep, the intermediate nodes along the unicast path relay the reply to the next up-
stream node indicated in the embedded path. The initiator checks the signatures and
accepts the route if all checks validate.

We express Ariadne using Promela to facilitate SPIN analysis. The first step is to
define the message format. The identifier (id) is dropped from the message since we
are analyzing one route discovery round. We replace the id with a Boolean value in
each node to ensure only one rreq is processed for the route discovery round. To main-
tain common message formatting and subsequent channel modeling, the rreq and rrep
messages are modeled following the same format. The signatures of the intermediate
and target nodes are combined producing the following interim message abstraction:

<msg_type, initiator, target, accum_path, hash_chain, sig_list>.

Ariadne does not use the hash_chain in the rrep and it is set to zero after the target
processes the rreq. The two fields of interest are the hash_chain and the sig_list,
which model the cryptographic one-way hash value and the list of cryptographic sig-
natures respectively.

The hash_chain represents a cryptographically secure one-way computation. At
each stage an intermediate node rehashes the value after appending its node id to the
previous hash value. This process produces the one-way hash chain with i represent-
ing the current node and i-1 representing the previous node along the forward rreq:

hi = H[ni, hn(i-1)] = H[ni, H[ni-1, … H[n0, h0] …]].

During protocol operation the computed hash value is transmitted. For modeling
purposes we remove the hash operation, listing the hash chain as: [ni, ni-1, …., n1, no].
Modeled nodes may not corrupt or remove an earlier appended value to the hash
chain, since we are modeling a one-way hash value based on the chain's node identifi-
ers in the appended array. We capture the hash computation by restricting a node's

 Automated Evaluation of Secure Route Discovery in MANET Protocols 33

actions against the modeled hash chain to either replaying the entire chain or comput-
ing a hash value by appending to any previous hash chain captured from the wireless
environment.

We represent the hash chain in Promela with an append only accumulated array.
To capture the properties of the one-way hash computation, the model does not allow
an intermediate node to change the hash_chain. The modeled hash chain is different
than the accumulated path (accum_path), as the model does not restrict changes to the
accumulated path. Once the target receives the rreq, it checks the accumulated path
against the hash chain to ensure they match. This process captures the effect of the
target computing a one-way hash value using the path contained in the rreq message
and comparing it against the hash value delivered in the rreq.

The Ariadne accumulated intermediate node signatures (sig_list) protect the proto-
col from including malicious outsiders in the routing path. The initiator validates the
signatures against the received accumulated path. We model the sig_list in the same
fashion as the hash value, appending a node id to the sig_list to indicate a node has
signed the given message. The signatures cannot be reordered, but can be dropped in
the reverse order to match any attacker dropping nodes from the end of the accumu-
lated path. Assuming the signature process is cryptographically secure and limiting our
future attack process to dropping nodes from the end of the path, we do not explicitly
model the intermediate signatures in order to reduce the state-space. We do model the
target signature over the path to secure the embedded path returned in the route reply.
The target models the signature by copying the accumulated path from the forward
rreq into the signature in the rrep. The signature cannot be corrupted during the rrep,
allowing the initiator to check the returned accumulated path against the target signa-
ture to ensure routing attacks performed against the return rrep are detected.

The Ariadne model therefore uses the following message format, where accum_pos
and hash_pos track the current position for the non-malicious node to append itself to
the accumulated path and abstracted hash chain to the current forward rreq message.
We use a single array called crypt_val to model both the hash chain and target signa-
ture. During the forward rreq, crypt_val holds the hash chain. During the return rrep,
crypt_val holds the target signature.

 <msg_type, initiator, target, accum_path, accum_pos, crypt_val, hash_pos>.

Modeling endairA. The endairA protocol [12] attempts to secure DSR by only secur-
ing the rrep using signatures, as illustrated in Figure 4. Node 0 is the initiator, node 3
is the target, and SKi is node i's signing key.

The endairA message formats follow as:

• <rreq, initiator, target, id, accum_path>
• <rrep, initiator, target, accum_path, sig_list> .

Instead of protecting the forward rreq process, the target computes a signature over
the accumulated path received in the rreq and adds the signature to the rrep. During
the rrep, the intermediate nodes sign the message and forwards to the next hop. Once
the rrep reaches the initiator, the initiator checks the target signature and verifies that
each node in the return path has signed the message in reverse order. While the target
may sign corrupted paths received by rreq, the protocol authors contend these paths
should not make it back to the initiator with the correct appended signatures.

34 T.R. Andel and A. Yasinsac

10 32
msg1 msg2 msg3

msg6 msg5 msg4

10 32
msg1msg1 msg2msg2 msg3msg3

msg6msg6 msg5msg5 msg4msg4

msg1 = (rreq, 0, 3, id, ())
msg2 = (rreq, 0, 3, id, (1))
msg3 = (rreq, 0, 3, id, (1, 2))
msg4 = (rrep, 0, 3, (1, 2), (sig3))

sig3 = SK3{rrep, 0, 3, id, (1, 2), ()}
msg5 = (rrep, 0, 3, (1, 2), (sig3, sig2))

sig2 = SK2{rrep, 0, 3, (1, 2), (sig3)}
msg6 = (rrep, 0, 3, (1, 2), (sig3, sig2, sig1))

sig1 = SK1{rrep, 0, 3, (1, 2), (sig3, sig2)}

msg1 = (rreq, 0, 3, id, ())
msg2 = (rreq, 0, 3, id, (1))
msg3 = (rreq, 0, 3, id, (1, 2))
msg4 = (rrep, 0, 3, (1, 2), (sig3))

sig3 = SK3{rrep, 0, 3, id, (1, 2), ()}
msg5 = (rrep, 0, 3, (1, 2), (sig3, sig2))

sig2 = SK2{rrep, 0, 3, (1, 2), (sig3)}
msg6 = (rrep, 0, 3, (1, 2), (sig3, sig2, sig1))

sig1 = SK1{rrep, 0, 3, (1, 2), (sig3, sig2)}

Fig. 4. endairA Protocol Messages

The approach to modeling endairA is similar to the Ariadne abstraction. As in
Ariadne, we drop the id from the message and replace it with a Boolean value to en-
sure only one rreq is processed for the route discovery round. To maintain common
message formatting and subsequent channel modeling, the rreq and rrep messages are
modeled following the same format. Our message abstraction follows as:

<msg_type, initiator, target, accum_path, accum_pos, target_sig, sig_list, sig_pos>.

The target signature (target_sig) holds the signature over the accumulated path that
the target calculates and embeds into the rrep. The value is modeled by copying the
accum_path array into the target_sig array. The attacker cannot change the target_sig,
which protects the path from being corrupted during the rrep. The signature list
(sig_list) keeps track of each node that has signed the rrep during its message tra-
versal. We model this activity in an array, where each node adds its id to the sig_list
during the rrep. Once the initiator receives the rrep, it checks the target signature to
ensure the accumulated path matches the signature and verifies that all nodes in the
accumulated path have signed the message by checking the signature list.

3.3 Modeling the Attacker

There are known attacks against MANET routing protocols that have no known detec-
tion or prevention mechanism. Attacks such as the invisible node attack (INA) [26]
are a continued threat since no current mechanisms can positively identify the node
that transmitted a given message. Additionally, malicious insiders can refuse to par-
ticipate in routing protocols at will, even though they are trusted to follow the
protocol rules.

This research focuses on an attacker that actively corrupts the embedded route dur-
ing the MANET route discovery phase, resulting in routes that do not match the cur-
rent network topology. The attacker model incorporates static analysis techniques to
produce a finite attacker model that an automated model checker can execute. If we
allowed an attacker to arbitrarily change messages, the state-space for all possible
messages would quickly exceed computational capabilities. The routing messages and
structure are dependent on the interactions between the intermediate nodes and the
network topology, which complicates the analysis structure as compared to authenti-
cation protocol analysis.

We leverage the fact that a simplified three node (source, destination, attacker)
structure can model end-to-end authentication protocol security requirements [13].
Rather than using model checking to generate all possible message structures, we

 Automated Evaluation of Secure Route Discovery in MANET Protocols 35

evaluate all possible path sequences through the wireless network structure. To de-
velop the attacker model we follow the approach in [24] to limit the attacker's actions
based on the information provided by the protocol messages that could possibly en-
able an attack. This process requires static analysis over the possible messages the
attacker can capture and extracts only the information required by the attacker to per-
form a successful attack. The information obtained by the static analysis allows the
attacker to model a finite set of attempted attack sequences.

Ariadne Attack Development. We use the messages in Fig. 3 for static analysis to de-
velop the Ariadne attacker. Since the target node signs the accumulated path received in
the rreq, the path cannot be corrupted during the rrep. Thus, the target signature limits
the attacker to the forward rreq. Examining the rreq message structure indicates that the
unprotected accumulated path can be changed as long as the corresponding hash chain
and signatures match the path changes. The forward intermediate signatures do not al-
low the attacker to reorder the path or add an outsider to the path. Since we are not
explicitly modeling the forward signatures, we limit the malicious insider to only ap-
pending or dropping a node from the end of the accumulated path. We also limit the
malicious outsider to only dropping a node from the end of the accumulated path, since
the outsider cannot generate a valid signature without a trusted key.

The final message element to consider is the one-way hash value. Due to its cryp-
tographic properties, the hash value cannot be directly corrupted as was the previous
case in [10]. In [10], the attacker simply dropped a node from the accumulated path in
the rreq and did not attempt to corrupt or compute the cryptographic message authen-
tication code in SRP. The Ariadne attacker in the current case must actively compute
a valid cryptographic value. Any attacker that attempts to drop a node from the accu-
mulated path must compute a hash value that corresponds to the new path. The only
way for an attacker to strip a node from the end of the accumulated path and compute
a correct corresponding hash value is to generate the hash value based on capturing a
previous hash value from an upstream neighbor during the current route discovery
round. Hash values from previous route discovery rounds would not match due to the
message id or sequence number. For instance, if an attacker wishes to remove node 2
from the protocol example in Figure 3, it needs to know the value h1. If h1 is not cap-
tured from msg2 it can be calculated from h0 (captured in msg1), since h1 = H[1,h0].
The resulting malicious insider attacker process proceeds as follows. Upon receiving
a rreq from an intermediate node, the attacker stores the associated node's hash value
and checks to see if it knows a hash value from a previous upstream neighbor. If the
attacker has this knowledge, it drops the last node and adds its id to the accumulated
path The attacker also replaces the hash value with its local hash calculation. To com-
pute a valid hash, the modeled attacker appends nodes to a previous hash-chain until it
matches the current accumulated path. During the rrep, the attacker attempts to relay
the rrep to any upstream neighbor. The malicious outsider follows the same process
except that it does not add its id to the path after dropping the last node from the ac-
cumulated path.

These attacks are possible as long the attacker can capture a previous enabling hash
value and the rrep is deliverable to one of the attacker's upstream neighbors.

endairA Attack Development. We use the messages in Figure 4 for static analysis to
develop the endairA attacker. As in Ariadne, the target signature on the accumulated

36 T.R. Andel and A. Yasinsac

path ensures the path cannot be corrupted during the rrep. Since the signatures added
by the intermediate nodes during the rrep must match the reverse order as the path
signed by the target in the rrep, any attack must be limited to malicious insiders. If a
malicious node strips a node during the forward rreq, it requires a direct link to an
upstream node to ensure the next node can produce the appropriate signature during
the rrep. However, this link would constitute a valid path. The only avenue that al-
lows the malicious insider the ability to drop nodes without this direct link is the abil-
ity to generate signatures for more than one node. If we assume the cryptographic
process is secure in polynomial time, the only way the attacker can produce multiple
signatures is to have multiple keys. In a colluding environment, we assume that all
colluding attackers have previously shared their keying material.

The resulting attacker model in a colluding environment proceeds as follows. If the
forward rreq passes through two attackers, the second attacker strips the nodes be-
tween the two attackers before sending the rreq to the next hop. Once the target signs
the corrupted accumulated path, it responds with the rrep. During the rrep the second
attacker signs for both attackers in the correct order to ensure the signatures match the
nodes in the accumulated path. The requirement to enable this attack is that the sec-
ond attacker must be able to relay information to the upstream node prior to the first
attacker.

A unique aspect to modeling the endairA attacker from our work in [10] and the
Ariadne attacker is that we demonstrate how Promela models can generate attacks
based on colluding attackers. In the model, an attacker node is able to discern if a col-
luding attacker has added its id to the route discovery path and it can react accord-
ingly to initiate the attack.

4 Automated Topology Generation and Analysis

The protocol and attacker models allow us to use SPIN to examine if a message se-
quence exists that allows an attack for the given network topology being analyzed. In
[10] we chose an enabling attacker topology based on static analysis; however, a
complete automated analysis capability should not rely on manually choosing an ena-
bling topology. One of the biggest impediments to manual analysis methods is the
intuition to choose a network configuration in which the attack exists.

To solve this problem, we use our SPIN models to evaluate all network topologies
for N number of nodes. The evaluation process consists of specifying N and evaluat-
ing the model against each possible topology. The process relies on duplicating the
Promela file for each topology, adapting the network connectivity array to reflect each
configuration.

The network and corresponding connectivity array in Figure 2 represent a symmet-
ric (i.e., bi-directional) network. The shaded areas indicate which array portions are
symmetric. If modeling an asymmetric (i.e., directional) network, the symmetric areas
within the connectivity array do not exist. In the asymmetric case the number of
topologies is determined by:

2(N-1) x 2(N-1) x …. x 2(N-1) = 2N(N-1) .

 N

 Automated Evaluation of Secure Route Discovery in MANET Protocols 37

When modeling symmetric networks, the number of topologies is based on the
possibilities for the shaded areas to one side of the zero diagonal. Since the number of
elements that determine the symmetric topology are half of the asymmetric case, we
can calculate the number of symmetric topologies by: 2N(N-1)/2.

In this research, we analyzed the modeled protocols using a 5-node symmetric
network. With N = 5, a total of 1,024 unique topologies are possible. Following the
complete analysis process shown in Figure1, the remaining steps consist of the To-
pology Generation Engine, the Evaluation Engine, and the Reporting Engine. These
steps utilize Perl routines to generate, evaluate, and report on the attacker capability
for all possible network topologies for a given network size N.

The Topology Generation Engine generates a new Promela file for each possible
network topology for the given network size N. The 5-node symmetric topology array
can be illustrated according to Figure 5.

val-0

val-1

0

val-3

val-6

0

val-2

val-0

val-4

val-7

val-2

0

val-1

val-5

val-8

val-7

val-8

val-6

val-9

0

val-4

val-5

val-3

0

val-90

1

2

3

4

0 1 2 3 4

val-0

val-1

0

val-3

val-6

val-0

val-1

0

val-3

val-6

0

val-2

val-0

val-4

val-7

0

val-2

val-0

val-4

val-7

val-2

0

val-1

val-5

val-8

val-2

0

val-1

val-5

val-8

val-7

val-8

val-6

val-9

0

val-7

val-8

val-6

val-9

0

val-4

val-5

val-3

0

val-9

val-4

val-5

val-3

0

val-90

1

2

3

4

0

1

2

3

4

0 1 2 3 40 1 2 3 4

Fig. 5. 5-Node Symmetric Topology Array Values

By listing the network connectivity array values in this manner, we can represent the
upper (or lower) half of the array with a binary string value as illustrated in Figure 6.
We iterate the binary string through all possible values to generate all possible topolo-
gies, starting with the base topology that stores the initial network as fully disconnected
(i.e., all links set to 0). Since N = 5, the binary string is enumerated between 0 and
1023 to represent all possible topologies. For each network topology we read the base
Promela file and adjust the network connectivity array as appropriate for the current
binary string representation, saving the output as filename_case-#.pml.

val-0val-1val-3val-6 val-2val-4val-7 val-5val-8val-9 val-0val-1val-3val-6 val-2val-4val-7 val-5val-8val-9

Fig. 6. Binary String Representation

The next step in the analysis process is the Evaluation Engine, which compiles and
executes each Promela file for SPIN exhaustive analysis. Any successful attacks are
stored in individual SPIN trail files that capture the attack event sequence. The final
step occurs in the Reporting Engine, which reads each error file and associated Pro-
mela model file to report the discovered attacks. The information returned is the initia-
tor, target, and attacker nodes, along with the corrupted path and the current network
topology.

38 T.R. Andel and A. Yasinsac

5 Evaluation Criteria and Results

In addition to modeling the protocol and attacker, we define the desired security
property (φ) as:

φ = all returned routes must exist in the current network topology.

To evaluate the property in SPIN we add an analysis check for the path once it is
received and accepted by the node that initiated the route discovery process. The node
evaluates the returned path to ensure each link exists in the model's connectivity ar-
ray. If any link check fails, an assertion violation is raised and SPIN halts execution,
creating a trail file that lists the event sequence leading to the failure.

Our automated process ensures all topologies for a given network size N are gener-
ated and subsequently evaluate using SPIN. The following analysis assumes that N=5.

5.1 Attacking Ariadne

Running the analysis procedure against Ariadne and a malicious insider produces the
following attack output as generated by the Report Engine:

Processing case: ari_nda-rreq_5node_case-611.pml
Initiator Node: 0 Target Node: 3 Attacker Node: 4 Corrupted Path: 0 - 1 - 4 - 3
The topology is:
 net_con[0].to[0] = 0 net_con[0].to[1] = 1 net_con[0].to[2] = 0 net_con[0].to[3] = 0 net_con[0].to[4] = 1
 net_con[1].to[0] = 1 net_con[1].to[1] = 0 net_con[1].to[2] = 1 net_con[1].to[3] = 0 net_con[1].to[4] = 0
 net_con[2].to[0] = 0 net_con[2].to[1] = 1 net_con[2].to[2] = 0 net_con[2].to[3] = 0 net_con[2].to[4] = 1
 net_con[3].to[0] = 0 net_con[3].to[1] = 0 net_con[3].to[2] = 0 net_con[3].to[3] = 0 net_con[3].to[4] = 1
 net_con[4].to[0] = 1 net_con[4].to[1] = 0 net_con[4].to[2] = 1 net_con[4].to[3] = 1 net_con[4].to[4] = 0

Further investigation into the associated SPIN trail file shows the message se-

quence leading to the route corruption attack. Figure 7 illustrates the message se-
quence for the identified topology that returns the corrupted route. Recall we are not
explicitly modeling the signatures; however, the attacker actions from the trial file
result in the complete attack. The attacker node removed node 2 from msg3, added
itself to the current accumulated path, computed the matching hash value, and trans-
mitted the corrupted path in msg4. The resulting corrupt path is returned in msg5 as
0-1-4-3. This attack violates both the security property φ and an original Ariadne se-
curity claim. In [11], the Ariadne authors claim that a single malicious insider cannot
remove a node during route discovery. This attack was also previously indicated in
[12] using the simulatability method and subsequently reported using visual inspec-
tion techniques. This research demonstrates the ability to automatically discover the
attack through model checking techniques.

Analysis over Ariadne against a malicious outsider reports a similar attack, with
the exception that the attacker node 4 does not add itself to the accumulated path in
msg4. The resulting corrupt path is 0-1-3. This attack violates both the security prop-
erty φ and an original Ariadne security claim. In [11], the Ariadne authors claim an
attacker with no comprised keys and any number of attacker nodes, can only perform
a wormhole attack or force the protocol to choose an attacker desired path by rushing,

 Automated Evaluation of Secure Route Discovery in MANET Protocols 39

which occurs when the attacker node responds to the route discovery process faster
than the protocol expects. We have shown how a malicious outsider can actively
change the embedded routing path. This attack is the first to our knowledge that
shows a malicious outsider can actively corrupt the Ariadne route discovery process.
In order to drop a node from the accumulated path during the rreq, the attacker re-
quires only the ability to generate the appropriate hash value, based on capturing a
hash from an upstream node in the path. The attacker also must be able to relay the
return rrep to any upstream neighbor in the unicast rrep.

Fig. 7. Ariadne Attack Sequence

5.2 Attacking endairA

Running the analysis procedure against endairA and two colluding malicious insiders
produces the following attack output as generated by the Report Engine:

Processing case: end_nda-2_5nodel_case-250.pml
Initiator Node: 0 Target Node: 2 Attacker Node: 4 Corrupted Path: 0 - 3 - 4 - 2
The topology is:
 net_con[0].to[0] = 0 net_con[0].to[1] = 0 net_con[0].to[2] = 0 net_con[0].to[3] = 1 net_con[0].to[4] = 1
 net_con[1].to[0] = 0 net_con[1].to[1] = 0 net_con[1].to[2] = 1 net_con[1].to[3] = 1 net_con[1].to[4] = 1
 net_con[2].to[0] = 0 net_con[2].to[1] = 1 net_con[2].to[2] = 0 net_con[2].to[3] = 0 net_con[2].to[4] = 1
 net_con[3].to[0] = 1 net_con[3].to[1] = 1 net_con[3].to[2] = 0 net_con[3].to[3] = 0 net_con[3].to[4] = 0
 net_con[4].to[0] = 1 net_con[4].to[1] = 1 net_con[4].to[2] = 1 net_con[4].to[3] = 0 net_con[4].to[4] = 0

Figure 8 illustrates the attacker message sequence revealed in the associated SPIN

trail file.
To the best of our knowledge, we provide the first active route corruption attack

against endairA performed by two malicious insiders. During the rreq, node 4 re-
moves the intermediate node between itself and the colluding attacker node 3. During
the rrep, node 4 signs for both itself and node 3 since the colluding nodes share their
cryptographic keys. The initiator believes msg6 is from node 3, since the signatures
are correct and the initiator cannot physically identify that node 4 actually sent the
message. The resulting corrupt path is 0-3-4-2. This attack violates both the specified
security property φ and an original endairA security claim. In [12], the authors claim
that endairA cannot be attacked by colluding adversaries unless the adversaries are
local neighbors to one another.

40 T.R. Andel and A. Yasinsac

Fig. 8. endairA Attack Sequence

6 Conclusion

In this paper, we provide an automated model checking technique to evaluate route
corruption attacks against the route discovery phase for on-demand source routing pro-
tocols. The existing security analysis techniques used to evaluate security properties in
MANET routing protocols are not automated or do not provide exhaustive attacker
analysis.

Our automated analysis process uses the SPIN model checker to examine all mes-
sage event sequences for a given topology. We additionally provide exhaustive topol-
ogy generation to ensure all possible network topologies for a given network size N
are evaluated. Each topology is subsequently analyzed with SPIN, identifying any
configuration and corresponding event sequence producing attacks along with the
attack sequence.

Through the use or our automated evaluation process we identified previously un-
documented attacks against the Ariadne and endairA protocol and have shown the
feasibility of using model checking to automate attack analysis in MANET routing
protocols.

Our future work includes introducing more detail into the protocol models. As we
weigh the low level protocol details against the required state-space, our goal is to de-
velop a protocol entirely in the model checking paradigm to meets its goals and pro-
vide subsequent compilation to produce executable routing code for network devices.

References

[1] Royer, E.M., Toh, C.-K.: A review of current routing protocols for ad hoc mobile wire-
less networks. IEEE Personal Communications 6, 46–55 (1999)

[2] Hu, Y.C., Perrig, A.: A survey of secure wireless ad hoc routing. IEEE Security & Pri-
vacy 2, 28–39 (2004)

[3] Argyroudis, P.G., O’Mahony, D.: Secure routing for mobile ad hoc networks. IEEE
Communications Surveys & Tutorials 7, 2–21 (2005)

[4] Djenouri, D., Khelladi, L., Badache, A.N.: A survey of security issues in mobile ad hoc
and sensor networks. IEEE Communications Surveys & Tutorials 7, 2–28 (2005)

[5] Andel, T.R., Yasinsac, A.: Surveying Security Analysis Techniques in MANET Routing
Protocols. IEEE Communications Surveys & Tutorials 9, 70–84 (2007)

 Automated Evaluation of Secure Route Discovery in MANET Protocols 41

[6] Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23, 279–295 (1997)

[7] De Renesse, F., Aghvami, A.H.: Formal verification of ad-hoc routing protocols using
SPIN model checker. In: 12th IEEE Mediterranean Electrotechnical Conference, vol. 3,
pp. 1177–1182 (2004)

[8] Wibling, O., Parrow, J., Pears, A.: Automatized Verification of Ad Hoc Routing Proto-
cols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 343–
358. Springer, Heidelberg (2004)

[9] Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for dis-
tance vector routing protocols. Journal of the ACM 49, 538–576 (2002)

[10] Andel, T.R., Yasinsac, A.: Automated Security Analysis of Ad Hoc Routing Protocols
Foundations of Computer Security and Automated Reasoning for Security Protocol
Analysis (FCS-ARSPA 2007), Wroclaw, Poland, pp. 9–26 (2007)

[11] Hu, Y.-C., Perrig, A., Johnson, D.B.: Ariadne: A Secure On-Demand Routing Protocol
for Ad Hoc Networks. Wireless Networks 11, 21–38 (2005)

[12] Ács, G., Buttyán, L., Vajda, I.: Provably secure on-demand source routing in mobile ad
hoc networks. IEEE Transactions on Mobile Computing 5, 1533–1546 (2006)

[13] Ryan, P., Schneider, S.: Modelling and Analysis of Security Protocols. Addison-Wesley,
Harlow (2001)

[14] Burmester, M., Van Le, T.: Secure multipath communication in mobile ad hoc networks.
In: International Conference on Information Technology: Coding and Computing (ITCC
2004), vol. 2, pp. 405–409 (2004)

[15] Kotzanikolaou, P., Mavropodi, R., Douligeris, C.: Secure Multipath Routing for Mobile
Ad Hoc Networks. In: Second Annual Conference on Wireless On-demand Network Sys-
tems and Services (WONS 2005), pp. 89–96 (2005)

[16] Awerbuch, B., Holmer, D., Nita-Rotaru, C., Rubens, H.: An on-demand secure routing
protocol resilient to byzantine failures. In: 3rd ACM Workshop on Wireless Security, pp.
21–30. ACM Press, Atlanta (2002)

[17] Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions. ACM
Computing Surveys 28, 626–643 (1996)

[18] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
[19] Meadows, C.: The NRL Protocol Analyzer: An Overview. The Journal of Logic Pro-

gramming 26, 113–131 (1996)
[20] Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166.
Springer, Heidelberg (1996)

[21] Song, D., Berezin, S., Perrig, A.: Athena: A novel approach to efficient automatic secu-
rity protocol analysis. Journal of Computer Security 9, 47–74 (2001)

[22] Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theoretical Computer Science 367, 203–227 (2006)

[23] Yang, S., Baras, J.S.: Modeling vulnerabilities of ad hoc routing protocols. In: 1st ACM
Workshop on Security of Ad hoc and Sensor Networks, pp. 12–20 (2003)

[24] Maggi, P., Sisto, R.: Using SPIN to Verify Security Properties of Cryptographic Proto-
cols. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 187–204.
Springer, Heidelberg (2002)

[25] Ruys, T.C.: Towards effective model checking. Department of Computer Science. Uni-
versity of Twente, Deventer, The Netherlands (2001)

[26] Andel, T.R., Yasinsac, A.: The Invisible Node Attack Revisited, pp. 686–691. IEEE
SoutheastCon, Richmond (2007)

Model Checking Abstract Components within

Concrete Software Environments

Tonglaga Bao and Mike Jones

Computer Science Department, Brigham Young University,
Provo, UT

{tonga,jones}@cs.byu.edu

Abstract. In order to model check a software component which is not a
standalone program, we need a model of the software which completes the
program. This is typically done by abstracting the surrounding software
and the environment in which the entire system will be executed. How-
ever, abstracting the surrounding software artifact is difficult when the
surrounding software is a large, complex artifact. In this paper, we take
a new approach to the problem by abstracting the software component
under test and leaving the surrounding software concrete. We compare
three abstraction schemes, bitstate hashing and two schemes based on
predicate abstraction, which can be used to abstract the components.
We show how to generate the mixed abstract-concrete model automat-
ically from a C program and verify the model using the SPIN model
checker. We give verification results for three C programs each consist-
ing of hundreds or thousands of lines of code, pointers, data structures
and calls to library functions. Compared to the predicate abstraction
schemes, bitstate hashing was uniformly more efficient in both error dis-
covery and exhaustive state enumeration. The component abstraction
results in faster error discovery than normal code execution when prun-
ing during state enumeration avoids repeated execution of instructions
on the same data.

1 Introduction

One way to manage the complexity of large software engineering projects is to
factor the problem into cooperating components. Each component must then
be written to implement that component’s functionality in the context of other
components. The modular verification problem is the problem of showing that
each component behaves correctly in the execution environment created by the
other components.

We focus on modular formal verification when no formal model of the sur-
rounding software exists. Such a formal model would most likely be missing
because it is too expensive to generate. This can happen, for example, when the
implementations of some components deviate from their specifications but the
nature of those deviations has not been precisely characterized. Or, there may
simply be no formal model of the entire system. In these situations, the key

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 42–59, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Checking Abstract Components 43

verification question is: does the component under test satisfy a set of properties
in the context provided by the other components even though there is no formal
model of the other components?

Modular verification without a formal specification of the surrounding soft-
ware is important to engineers who must implement and verify components for
existing software. This problem can occur when existing software is upgraded or
when software development organizations decide to use formal verification after
having developed a significant amount of software. In these and similar cases, a
technique is needed to verify formal properties of new components in the context
of existing software.

Formal approaches to modular software verification have been proposed for
quite some time. However, in every case, the component is left concrete while
the environment is abstracted. This poses two problems. First, the component
itself may be too complex to admit formal analysis without abstraction. Second,
abstraction of the software environment requires a formal model of the software
environment. This means that the surrounding software must be converted to a
formal model during or before abstraction. For large software environment, this
is prohibitively expensive.

Fortunately, a precise model does exist for every executable software artifact.
This model, though difficult to describe analytically, is simply the behavior of
the software on the computational platform on which it was intended to be
executed. The idea of defining semantics through execution is not new and lies at
the foundation of advances in explicit state-space representation model checking
[6,10,13].

Similarly, discovering the precise definition of software meaning through
execution lies at the core of our approach. The main difficulty is creating an
efficient interface between the abstract component and unabstracted surround-
ing software. The interface must be defined so that execution can be quickly
passed to concrete software across the abstraction boundary. For example, over-
approximation schemes are unsuitable because a single abstract state may
represent thousands of concrete states–many of which are infeasible. Each of
these concrete states would need to be passed and executed by the surrounding
software.

In this paper, we present a new approach to component verification in which
the component is abstracted and the environment is left concrete. We evaluate
three abstraction techniques which are compatible with this approach to modular
verification.

We have implemented our idea in the SPIN model checker [6]. Given a program
written in C, we translate it to a model with PROMELA proctypes and C
functions using an extension of the CIL compiler [11]. Abstract components are
modeled by PROMELA proctypes and the surrounding software is left as C code
with little modification.

Previously, Holzman and Joshi extended PROMELA to have better commu-
nication with programs written in C using the c code and c track mechanism.
The C code enclosed inside a c code block is executed directly like a normal C

44 T. Bao and M. Jones

program. The c track block encloses variables from the C program which will be
tracked. Tracked variables are included in the PROMELA state vector. c track
declarations can be marked as “matched” or “unmatched” to indicate that the
variables will be stored into the hash table or not.

Inside a component, we translate branching instruction to PROMELA in or-
der to expose the program control flow to the model checker. We use c code and
c track mechanism. The environment is enclosed in c code block and the com-
ponent is a mixed model with c code instructions interspersed with PROMELA
instructions. In the component, variables are strategically tracked and matched
in order to support data abstraction. When execution reaches the component
boundary, the concrete state in the state exploration queue or stack can be
passed directly to the software environment.

We tried three potential abstraction scheme with the component. The first one
is described in [12]. It is an under-approximated abstraction scheme. Refinement
is achieved by checking the preciseness of the abstraction through weakest pre-
conditions. The second one is described in [9], in which refinement is obtained
by checking the value range of the variables. Third one is abstraction through
supertrace.

Our approach can verify software components that interact with complex sur-
rounding software. For example, the surrounding software might contain mathe-
matics for which first order logic theorem provers, as used in predicate
abstraction, can provide no useful information. This can happen even for rel-
atively simple operations like multiplying two variables or for more complex
operations like exponentiation or trigonometry. The environment might also con-
tain pointers and references which are too difficult to track in a formal semantic
model. Our model runs without problem in these cases since we simply execute
the environment instead of reasoning about it.

It would seem natural, at this point, to just execute the component instead of
reasoning about it as well. After all, executing the environment sidesteps range
of thorny semantic issues.

However, the surrounding software just provides the environment in which to
verify the component so simply it, with no attempt at analysis or verification,
is sufficient. But the component is the target of the verification effort, so tools,
such as abstraction, to improve the utility verification effort are warranted.

The main contribution of this paper is a model of components which supports
data abstraction for C programs. Our model supports model checking inside
unmodified, complex software environments and allows nested function calls be-
tween component and environment. Our state exploration algorithm is a simple
modification of standard state enumeration algorithms. The value of this work
is that it enlarges the class of C programs to which standard state enumeration
algorithms can be applied.

Experimental results show this algorithm is indeed able to deal with complex
surrounding software with complex control structures and suggest that our algo-
rithm can be used as a complementary method of testing to discover error faster

Model Checking Abstract Components 45

by covering the state space faster. It is a good way to deal with programs that
are too complex to be reasoned about by traditional model checking techniques.

Our test result shows abstracting the component using supertrace outper-
forms the other two abstraction schemes in terms of verification speed and error
discovery speed. It also outperforms concrete execution in terms of error discov-
ery speed when the state space includes many copies of the same large region of
states. In this case, concrete state exploration still needs to execute the already
visited states since it does not have a memory about what state is already vis-
ited. Abstraction, on the other hand, can jump out of the partial state space it
already visited and start to explore new state space faster.

In the next section we survey closely related work in abstraction for explicit
model checking and component-based verification. Section 3 contains an explicit
model checking algorithm for exploring the state space of abstract components
in concrete environments. Section 4 shows how we implement this approach in
SPIN. Section 5 provides experimental results. We close with conclusions and
ideas for future work in Section 6.

2 Related Work

In this section, we first discuss the prior work on which this work is built, then
present related work in abstraction and environment generation.

One way to view this paper is an extension of Holzmann and Joshi’s work on
model-driven software verification. In [7], Holzmann and Joshi describe a method
for mixing C code with PROMELA models such that data abstractions can be
performed on C variables. We build on their work by creating an abstraction
model for components based on data abstractions which under-approximate the
state space.

Our approach to modeling the software environment is fundamentally dif-
ferent than that used by Holzmann and Joshi. While Holzmann and Joshi use
PROMELA instructions as the test harness for C code, we use code from the
surrounding software as the test harness. Our approach is appropriate when a
PROMELA model of the surrounding software is too expensive to either build
or execute. Our approach also admits the use of PROMELA as a test harness
for parts of the system–such as for input from users.

FeaVer [8] also verifies C program or part of a C program. It uses a tool called
Modex to extract a PROMELA model from the C source code. When verifying
some specific functions of a program, Modex requires the user to provide a test
harness in which to test these functions. Our approach has similar goals and is
built on PROMELA commands, such as c code and c decl, which were used in
Modex. However, our approach simplifies the process of defining a PROMELA
model and test harness from a C program and our approach is designed to verify
data operations of C programs rather than just the concurrent behavior of a
threaded program. Our approach supports concurrency but the implementation
does not. Implementation of support for concurrency is a topic for future work.

46 T. Bao and M. Jones

In order to simplify the translation between branching instructions to PROM-
ELA in components, we used the CIL [11] compiler to compile C programs
into a C intermediate language, and then translate the resulting C intermediate
language into PROMELA. CIL can compile all valid C programs into a few core
syntactic constructs. This simplifies translation while allowing us to handle a
large subset of C.

2.1 Environment Generation

When verifying only part of a program, the problem of simulating the pro-
gram environment can be split into two parts: generating the test harness and
simulating the surrounding software. The test harness provides the inputs to
the program. Most existing work in component verification combines these two
problems together to provide an abstract environment to the program under test
which simulates both the test harness and the surrounding software.

Bandera [4] divides a given java program into two parts: the unit under test
and the environment. The component under test is verified concretely while the
environment is abstracted to provide the unit the necessary behaviors. The ab-
stract environment is obtained through a specification written by the user or
through the source code analysis. The drawbacks of this approach are: first,
abstracting the environment is a time consuming and error prone process. More-
over, it is hard to avoid the semantic gap between the concrete environment and
the abstract representation of it. Second, if the component under test is complex,
then model checking it concretely might cause state space explosion.

Slam [2] is a software model checker developed by Ball et al. to verify Win-
dows device drivers. A device driver is a program which communicates with
the operating system kernel on behalf of a peripheral device such as a mouse
or printer. The surrounding software for a device driver is the entire kernel, so
device driver verification requires a model of the kernel in order to close the
execution environment. Since the Windows kernel is a large, complex program
with no formal specification, manually generating a formal model of the kernel
is expensive and error-prone.

Instead, Ball et al. [1] generate kernel models via merging different abstrac-
tions of the kernel procedure. Slam selects a set of device drivers that utilize a
specific kernel procedure. These drivers then used as a training set by linking
each driver with this specific kernel procedure and executing it in Slam. Slam
automatically generates Boolean abstractions for the kernel procedure with each
device driver. The Boolean abstractions for the procedure can be extracted and
merged to create a library of Boolean programs which are used to verify future
device drivers which utilize that kernel procedure. In this work, we take a dif-
ferent approach. Instead of abstracting the kernel, we abstract the device driver
and leave the kernel software concrete. In our approach, a device driver would
be verified by abstracting the device driver then verifying the abstract model of
it in the context of the actual Windows kernel. An external environment that
generates IO requests to drive verification would also be needed.

Model Checking Abstract Components 47

2.2 Abstraction

We abstract the component under test during verification. Abstraction is a
widely studied topic in software model checking. Abstraction methods can be
split based on whether they over approximate and under approximate the reach-
able states of a program. SLAM, which was mentioned previously, uses predicate
abstraction [2] to abstract the device drivers and corresponding procedures in
the kernel. SLAM uses over approximation abstraction techniques.

In this work, we need an abstraction scheme which stores abstract states in
the hash table but uses concrete states in the queue of states to be expanded
because this simplifies passing states between component and environment.

We have investigated three abstraction schemes which have this property:
under approximation using predicates which requires a theorem prover for re-
finement, under approximation using predicates which do not require a theorem
prover for refinement and bitstate hashing. Results for component verification
using each of these abstractions are given later.

Pasareanu et al. proposed an under approximation abstraction approach which
uses predicates and a theorem prover to manage refinement [12]. They explore
the concrete state space, push concrete states into the stack and store their cor-
responding abstract states into the hash table. Abstract states are generated by
evaluating a set of predicates on variable values. The state vector includes one
bit per predicate and each bit is set based on the predicate’s truth value. Re-
finement is done by examining each transition relation in terms of the existing
predicates. If the existing predicates do not imply the weakest pre-condition of
the next state in terms of the current transition, then the abstraction is not
precise and the weakest pre-condition is added into the existing predicate set.
Otherwise, abstraction is precise and no refinement is necessary. Since the state
exploration is driven only by reachable concretes states in the stack, the ab-
straction never introduces new behaviors to the system. The abstraction misses
behaviors when two concrete states satisfy the same set of predicates but lead
to different program states.

Kudra and Mercer hypothesized that under approximation with predicates
could be made faster by eliminating the theorem prover in refinement checking
[9]. Pasareanu posed the same hypothesis, but eliminated the theorem prover by
always assuming that the abstraction is imprecise. Kudra and Mercer eliminated
the theorem prover by picking predicates which can be evaluated without a
first order logic theorem prover and tracking extra data required to test the
validity of those predicates. For each abstract state, they store the minimum
and maximum value of each variables. When the minimum and maximum value
of a variable is different, then they know this abstract state corresponds to at
least two concrete states and needs to be refined. Eventually, this method will
explore all the concrete states. However, before exploring all the concrete states,
it covers more of the state space in less time in order to find errors faster. For
some programs, eliminating the theorem prover results in faster error discovery
because states could be generated more quickly.

48 T. Bao and M. Jones

Bitstate hashing stores concrete states in the queue of states to be expanded,
but represents visited states using a single bit (or small set of bits) in the hash
table [5]. In bitstate hashing, the location for a state in the hash table is de-
termined by applying a hash function directly to the entire state vector. The
resulting value is used as an index into the hash table and the bit at that index
is set to true to indicate that the state has been visited. This abstraction misses
behaviors when two concrete states hash to the same value but result in different
program behaviors.

For the purposes of this work, under approximating predicate abstraction and
bit state hashing are the same process with the difference that predicates are
used to hash states in predicate abstraction while a hash function is used to hash
states in bit state hashing. In this sense, predicate abstraction is a semantically
based abstraction in which well-chosen predicates differentiate concrete states
based on their meaning while bit state hashing is purely a structural abstraction
in which the meanings of data values are ignored by the hashing function.

3 Algorithm

In this section first we describe the state exploration algorithm, then we discuss
how abstraction is done for components.

3.1 State Exploration

Figure 1 shows our state enumeration algorithm for verifying abstract compo-
nents in the context of concrete software. We have omitted property checking in
order to simplify the presentation. Safety property checking can be added.

Given a program prog, we call the procedure init in line 1. Φ stores the initial
set of predicates in line 2. The initial set of predicates is all of the guards in the
entire program. Φnew stores the set of new predicates used to refine the abstrac-
tion after each iteration and is initialized to the empty set in line 3. We check
the starting instruction of the program in line 6. If the starting instruction is in
the environment, then we execute instructions in the environment until control
returns to the component. An instruction is in the environment if the state gen-
erated by that instruction is in the environment. The environment is specified
as a range of program counter values, so an instruction is in the environment if
it generates a state with a program counter value which lies outside that range.
The environment execution functions returns the first state which lies in the
component.

Now that we have a start state which lies in the component, we push it on
the stack at line 8 and begin verification by calling the component function in
line 9. When using predicate abstraction with refinement, we repeatedly verify
the entire program until no refinement is necessary, as shown in line 10.

The component function is a variation of explicit state exploration in which
abstract states are stored in the hash table, concrete states are stored in the
stack and transitions which leave the component are serially executed without

Model Checking Abstract Components 49

storing states. We obtain the transition out of the current state in line 19. If that
transition exits the component, then we execute instructions in the environment
until an instruction returns control to the component at line 20. The next state
is generated by applying the current transition to the current state, line 21, or
in the environment function at line 28. State exploration then continues by
pushing the next state into the stack in line 22.

In the environment function, when the next instruction is in the environ-
ment, we will simply execute it at line 28. When the next instruction returns
control to the component, we return the first state which lies in the component
at line 31.

1 proc init(prog)
2 Φ := Guards(prog)
3 Φnew := ∅
4 do
5 Φ := Φ ∪ Φnew

6 if start instr ∈ environment then
7 start state = environment(start instr, start state)
8 push(start state)
9 component()
10 while Φnew �⊆ Φ
11 end
12
13 proc component()
14 while size(stack) != 0
15 cur state = top(stack)
16 α = abstract (cur state)
17 if (α �∈ hash table)
18 insert α into hash table
19 cur inst = transition(cur state)
20 if (cur inst �∈ comp) next state = environment (cur inst, cur state)
21 else next state = cur inst(cur state)
22 push (next state)
23 else pop(stack)
24 end
25
26 proc environment(inst, state)
27 do
28 next state = inst(state)
29 inst = transition (next state)
30 while (inst ∈ environment)
31 return (inst(next state))
32 end

Fig. 1. State enumeration algorithm that combines under-approximation with concrete
execution

50 T. Bao and M. Jones

3.2 Abstraction

The abstract function takes a concrete state s and returns an abstract state. abs
denotes an abstract state represented by a bit vector. The algorithm requires an
abstraction which stores concrete states in the stack and stores abstract states
in the hash table. If abstract states are stored in the stack, then passing control
between the component and environment at lines 7 and 20 of Figure 1 would be
more difficult because we would need to create a concrete state which represents
the abstract current state.

1 proc abstract(s)
2 foreach φi ∈ Φ do
3 if φi(s) then absi := 1
4 else absi := 0
5 if (refinement check is not valid)
6 addNewPreds(Φnew)
7 return abs
8 end

1 proc abstract(s)
2 abs = hash(s)
3 return abs
4 end

(a), (b) (c)

Fig. 2. Three abstraction schemes which store concrete states in the stack and abstract
states in the hash table and are compatible with our approach to component verifica-
tion. (a), (b) Predicate abstraction with or without a theorem prover as in [12] and
[9], the difference being that the precision check at line 6 is done with or without a
theorem prover. (c) Bit state hashing [5].

Figure 2 shows the abstractions which we have investigated as part of our
component model in this paper. The first pair of abstractions, (a) and (b), are
shown together because they differ only in the manner in which refinement is
checked at line 6. In both cases, refinement is checked by determining if the
abstraction of the previous state implies the abstraction of the next state with
substitutions made using assignments in the instruction between the states. A
detailed description can be found in [12] In Pasareanu’s case, the validity of the
implication is checked using an automatic theorem prover. In Kudra’s case, the
validity of the implication can be checked by determining if the variable’s value
falls within a certain range.

Figure 2(c) shows bitstate hashing interpreted as an abstraction function. This
is included to clarify the relationship between bitstate hashing and predicate
abstraction as used in our work. Bitstate hashing is an abstraction in which a
hash function is used to compute the abstract state. The abstract state is not
stored directly in the hash table, but is used as an address at which to set a bit
indicating that a state with that hash code has been visited. Refinement is not
possible using bitstate hashing so the predicate set Φnew is not updated and the
while loop in line 10 of Figure 1 is simply ignored. However, bistate hashing can
be made more precise by re-running the algorithm with a different hash function.

Model Checking Abstract Components 51

Each of the three abstractions in Figure 2 under approximate the state space.
Every abstract state corresponds to at least one concrete state since the abstract
function is only applied to already existing concrete states. States can be missed
when two concrete states have the same abstract representation and only one of
them is expanded. Like other under-approximation techniques, every error found
using our algorithm is a feasible error, but finding no errors does not guarantee
that the component is error free.

For predicate abstraction, both with and without a theorem proving support,
our under-approximation scheme can not be refined to include all behaviors of
the system since we ignore system behaviors in the environment and these parts
can not be included in the refinement check. More specifically, substituting the
right side of an assignment for the left side of the assignment when that variable
appears in the abstraction predicates can not be done safely for sequences of
transitions that pass through the environment. Multiple syntactic substitutions
for the transitions in the environment can mask program behavior and cause the
precision check to succeed when behaviors have been ignored.

Interestingly, this loss of information in the precision check is adjustable.
When the component grows to include the whole system, it is no longer required
to chain together transitions in the syntactic substitution for the precision check
and the refinement process works as described in [12]. A detailed discussion
of the properties of refinement for predicate abstraction in the context of our
component modeling method can be found in [3].

4 Implementation

We have implemented the algorithm in SPIN model checker using CIL for pre-
processing of C code. For this implementation, we have assumed that a function
is the basic unit of a component or the environment. In other words, each func-
tion in a C program either belongs entirely to the component or belongs entirely
in the environment. We group interesting functions together to be verified as a
single component, and group everything else into the environment.

Each function in the component is translated into a proctype in SPIN to
be verified. The functions in environment remain unchanged as C functions.
The details of how a function is translated into a SPIN proctype and how the
SPIN proctypes interacts with the functions in the environment are discussed
below.

SPIN supports embedded C code by providing five different primitives identi-
fied by the following keywords: c code, c track, c decl, c state, and c expr.
Everything enclosed inside c code block is compiled directly by GCC then ex-
ecuted and interpreted as one atomic PROMELA state. c track specifies the
C variables we want to track as part of the state vector. c track can be used
with the Matched or UnMatched keywords. Matched variables are stored both in
the state stack and hash table, while UnMatched variables are only stored in the
state stack. For example

52 T. Bao and M. Jones

1 main() {
2 int i;
3 for (i = 0; i < 10; i++)
4 if (i == 4)
5 break;
6 else i = i ∗ 2;
7 }

Fig. 3. A simple C program

1 c decl{ int i; char abs[predNum];}
2 c track “&i” “sizeof(int)” “UnMatched”
3 c track “&abs” “sizeof(abs)” “Matched”
4 proctype main() {
5 do
6 :: c expr{i < 10} → c code{i++; abstraction();}
7 if
8 :: c expr{i == 4} → break;
9 :: else → c code{i = i ∗ 2; abstraction();};
10 fi;
11 od;
12 }

13 c code {
14 void abstraction(){
15 for (i = 0; i < predNum; i + +)
16 if (preds[i] == true)abs[i] = 1;
17 else abs[i] = 0;
18 }
19 };

Fig. 4. The promela code generated from the C code shown in figure 3

c track “&i” “sizeof(int)” “UnMatched”

indicates C variable i will be tracked but not matched, and

c track “&i” “sizeof(int)” “Matched”

indicates i is both tracked and matched. A kind of forgetful data abstraction can
be obtained by tracking a variable but not matching it [7].

If a C function is contained within the component, then we translate it into
an equivalent PROMELA proctype by enclosing non-branching statements in
c code blocks and translated branching statements into PROMELA. We do this
in three steps.

First, we use CIL compiler to translate C into the C intermediate language
(CIL)[11]. The CIL compiler compiles a valid C program into a C program
which has a reduced number of syntactic constructs. By translating from C

Model Checking Abstract Components 53

to a syntactic subset of C using CIL, we obtain a C program with simpler
syntax, which makes translation from C to PROMELA much easier. We have
implemented an extension of the CIL compiler to translate the CIL language
into PROMELA.

Next, we enclose each non-branching statement of the component in a c code
block, so that every statement of the component is treated as a single PROMELA
transition.

Finally, although each statement of the component is enclosed by a c code
block, control statements are translated entirely into PROMELA. This allows
SPIN to expose the branching structure of the component during verification.

As an example, consider the C code in Figure 3 which is translated into the
PROMELA code shown in Figure 4 assuming the use of a predicate abstraction.
Abstraction through bit state hashing is simple as it does not require additional
arrays for predicates or their Boolean values. In Figure 4, predNum gives the num-
ber of predicates, abs[predNum] is a vector that contains abstract states, and
preds[predNum] contains the given predicates. The function abstraction() on
line 14 computes the abstraction by evaluating the predicates then storing their
evaluation in the abs[i] vector of bits.

Predicate abstraction in the component is achieved by tracking and matching
a bit vector. We declare an array of bits, called abs[], which are also marked as
Matched. After every assignment statement or function call in the component,
we insert a call to a C function named abstraction(). abstraction() checks
the current set of predicates and sets the corresponding bit values in abs[]. We
then store only the values of abs[] and ignore all other variables.

Abstraction through bit state hashing is achieved by using SPIN’s built-in
implementation of hashing.

The software environment is modeled by wrapping it in a single c code block.
This means that segments of the environment are executed as needed by SPIN
based on the behavior of the instructions in the component.

The next issue in the implementation is managing function calls within and
between components and the environment. When translating C into a mixed C-
and-PROMELA model, the most difficult problem is enforcing execution order in
the presence of function calls. Since SPIN is designed to run concurrent code, we
need to do some work to force it to avoid inappropriate interleavings in otherwise
sequential programs. On the other hand, modeling concurrent components is
more difficult because functions in the environment must support multiple active
invocations. For purely sequential components and environments, there are four
cases to consider depending on the location of the caller and the callee.

Inside a component, when a proctype calls a proctype, channels are used to
enforce the order of the execution. An example is given in Figure 5. In Figure 5,
proctype main calls proctype proc in line 7, and waits for proc to return at
line 8. proctype proc signals the end of execution by pushing 1 into the channel
at line 26. This signals the main process that it may resume execution.

When the code in a proctype calls a function in the environment, we pass an
integer pointer rtnFunFlag with the function call. The callee indicates its return

54 T. Bao and M. Jones

1 proctype main() {
2 c code{fun(rtnFunFlag, -1);};
3 do
4 :: c expr{*rtnFunFlag == 1} → break;
5 :: else → skip;
6 od;
7 run proc();
8 c ? 1;
9 }
10 c code {
11 fun(int* rtnFunFlag, int callerLabel){
12 if (callerLabel) goto label;
13 addproc(1);
14 goto end;
15 label:
16 *rtnFunFlag = 1;
17 end: ;
18 }
19 proctype proc(chan c, int callerID, int callerLabel) {
20 c code{
21 if (callerID){
22 funarray[callerID](callerLabel);
23 goto end;
24 }
25 }
26 c ! 1;
27 c code { end: ; };
28 }

Fig. 5. Functions in C translated into PROMELA

by setting rtnFunflag to 1 at the end of the function, at which time the caller
continues execution. This is illustrated by figure 5 in lines 2 to 6 and line 16.

The most difficult case is when a function in the environment calls a proctype
in the component. Since the c code block is designed to be executed without
interruption, if there is a call to a proctype in the middle, we must break out
of the c code block and run the proctype using just straight C. In the code
generated by the SPIN, we find that calling a proctype is translated into an
addproc function. In line 13 of figure 5, we add an addproc function to invoke
the corresponding proctype proc. We pass the return program counter, pc value
and function ID to proc so that it knows where to jump back to after execution.
Then the caller function will jump out of the c code block as shown in line 14.
Then the proc begins execution and jumps back to the right place depending
on the arguments.

When two functions in the environment call each other, it will be handled in
unmodified C code with little additional effort. One important thing to note is
that when a series of environment functions call each other, may be one of them
may in turn call a function in the component, which means we need to stop

Model Checking Abstract Components 55

execution in the environment immediately and return to the component. In this
case it is important to keep a stack of function names and labels so that each
environment function knows where to jump back after the component function
returns back to the environment.

5 Results

The implementation of the algorithm allows us to take C code and model check
parts of it. The C code can include complex data structures with pointers, and
calls to library functions.

We choose three models to illustrate the result. They are matrix multiplica-
tion, sorting algorithms, and a program that simulates the operating system’s
dynamic storage allocator. The Matrix Multiplication and Sorting algorithm im-
plementations are downloaded from the Internet. The dynamic storage allocator
is taken from an assignment in an undergraduate operating system class.

Matrix Multiplication is a program that takes two matrices from the user and
returns the product of those two matrices. This is an interesting problem for our
component model because the code contains much data and many predicates,
which makes it a good candidate for the predicate abstraction scheme. We supply
1000 pairs of matrices to the program. Each matrix has a user-defined number
of column and rows. We insert an assert function to check that the dimension of
the column of the first matrix equals to the row dimension of the second matrix.
The result of the verification is shown in table 1.

Table 1. Matrix Multiplication, All Times in Seconds, Memory in MB, INFI indicates
the result is not known because either time or space limitation is reached

matrix cLine eLine states mem predicates time eTime match
bitstate 120 270 5.3M 744 0 21 0.21 14
PA+TP 120 270 INFI INFI INFI INFI INFI INFI
PA+NTP 120 270 INFI INFI INFI INFI INFI INFI

In table 1, the first column gives the different abstraction schemes we test.
PA+TP indicates predicate abstraction with theorem prover, and PA+NTP in-
dicates predicate abstraction without theorem prover. In the first row, cLine is
the number of lines of code in the component, eLine is the number of lines of
code in the environment. There are also several library function calls which we
do not include in the line number count. Matrix Multiplication uses library calls
like “printf” and “assert”. States is the total number of states generated from
the component, mem is amount of memory (in Mbytes) used to store the state
space of the component, predicates is the total number of predicates used in the
verification. Time is the total time (in seconds) needed to complete the verifica-
tion without seeded errors, and eTime stands for total time to find seeded error.
Match shows the number of states that are matched inside the hash table. We
group several functions that do the main computation together to compose the

56 T. Bao and M. Jones

component and leave the rest of the software as the environment. This model
consists of total of 5 million states. Bit state hashing performs best in matrix
multiplication. Both of the other two algorithms fail to explore the total state
space or find errors in the given time and space limit.

Table 2 also contains results for the matrix multiplication model, but this time
we decrease the size of the component and increase the size of the environment
by 80 lines. All three algorithms run to completion for this model. Observe that
bitstate hashing generates the least number of states while TA+NTP generates
the most. That is because bitstate hashing only needs one iteration of the entire
program, but the other two do a refinement on their abstractions and continue
exploring the whole state space until the state space covers all concrete states.
PA+TP is the slowest in both error discovery and generating the whole state
space. That is because it has to call the theorem prover to decide which, if any
new predicates are needed for the refinement.

Table 2. Matrix Multiplication with smaller component, All Times in Seconds, Mem-
ory in MB

matrix cLine eLine states mem predicates time eTime match
bitstate 40 350 3718 2 0 0.01 0.001 0
PA+TP 40 350 12095 54 102 170 41 198
PA+NTP 40 350 192516 111 101 5.1 0.08 100

Table 3 shows the results for verifying a C model called sorting. It consists of
several different sort algorithms. They are selection sort, insertion sort, bubble
sort, and quick sort. We pick selection sort as a component. The property we
check is asserting a value is less than the value after it in a list after returning
back from the sorting functions. As the above models, bitstate hashing again
outperforms the other two abstraction schemes.

Table 3. Sorting Model, All Times in Seconds, Memory in MB

sorting cLine eLine states mem predicates time eTime match
bitstate 44 110 8226 86 0 0.73 0.2 0
PA+TP 44 110 INFI INFI INFI INFI 41 INFI
PA+NTP 40 110 491830 405 449 51 3.5 8604

In all the above models, bitstate hashing is by far more efficient than the
other abstraction techniques. In fact, in the previous models, concrete explo-
ration will be even more effective than bitstate hashing. However, there are
several advantages to explore and store abstract states instead of simply exe-
cuting them concretely. One advantage is through abstraction, the state space
is covered faster because previously visited regions of the state space can be
avoided through duplicate state detection using the bittable.

In table 4, we have a larger model that simulates part of an operating system
which allocates, reallocates, and frees blocks of memory. This code has a bigger

Model Checking Abstract Components 57

Table 4. Malloc Model, All Times in Seconds, Memory in MB

malloc cLine eLine matched time
bitstate 100 2000 10 1.2
concrete 0 2100 0 169

and more complex environment compared with the other two models. In this
model, the component is 100 lines of codes and the environment is 2000 lines
of codes. Both the component and environment uses library calls like “malloc”,
“realloc” etc. These libraries plus the environment make it difficult to model the
code formally. By concretely executing them, we don’t need a formal model of
them.

We add a loop to make part of the code executes repeatedly, and we put an
assert function outside of the loop. The purpose of doing that is to see if bitstate
hashing can find an error faster than concrete exploration by recognizing already
visited states and going to another part of the state space. The experimental
result shows that it takes concrete exploration 169 seconds to discover the error,
but bitstate hashing find it in only 1.2 seconds. The reason for that is bitstate
hashing is able to track the states. When it sees an already explored state, it will
backtrack and explore the other part of the state space. Table 5 shows a similar
result. In this test, we increase the size of the component. Bitstate algorithm
again finds error faster than concrete exploration.

Table 5. Malloc Model, All Times in Seconds, Memory in MB

malloc cLine eLine states matched time
bitstate 400 1700 142352 8 5.3
concrete 0 2100 0 0 169

6 Conclusion and Future Work

In this paper, we have presented a technique for component-based verification
that supports abstraction of the component under test rather than the environ-
ment in which the component is embedded. The abstraction can be applied when
the source code for, but not a model of, the surrounding software is available.

The main purpose of this approach to abstraction is to save space and time
by verifying only the part of the program under test rather than reasoning about
the entire program. This approach assumes that errors which occur outside of
the component under test are irrelevant and can be ignored. The focus is on
detecting errors which are located inside the component, but which may have
been caused by behaviors outside the component. Similarly, errors detected in
the context of a specific software environment say nothing about errors in the
context of even a slightly different software environment. The salient assumption
here is that errors within a specific environment are of more interest than errors
that exist in a family of environments.

58 T. Bao and M. Jones

Experimental result shows that we can verify a C program with the SPIN
model checker automatically with little change to the original software. This
software also can run in complex environments and call any library function.We
abstract the component under test. The experiments suggest that bitstate hash-
ing is the most efficient abstraction for this approach to component verification.
Abstraction based on predicates did not reduce the abstract state space enough
to justify the additional time to interpret states using predicates. The exper-
iments also demonstrate that errors can be found in abstracted components
more quickly than errors can be found by simply executing the component. This
happens when the model checker prunes the search during state enumeration.
Abstraction of components finds errors more quickly than executing the compo-
nent as is when the state space includes many copies of the same large region of
states. In this case, concrete state exploration still needs to execute the already
visited states since it does not have a memory about what state is already vis-
ited. Abstraction, on the other hand, can jump out of the partial state space it
already visited and start to explore new state space faster. Of the three abstrac-
tion methods we used, bitstate hashing found errors in the least time, mostly
because it does not need a refinement.

We have not yet investigated methods for extracting components from soft-
ware. Instead, we have simply assumed that the component is given by a set
of pc values. One avenue for future work is developing methods for extracting
useful components from software based on a set of verification properties. Fu-
ture work also includes investigating other abstraction schemes and extending
the implementation to handle concurrent software.

References

1. Ball, T., Levin, V., Xie, F.: Automatic creation of environment models via training.
In: 10th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Barcelona, Spain, pp. 93–107 (2004)

2. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static
analysis. In: 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), New York, pp. 1–3 (2002)

3. Bao, T.: Refinement for predicate abstraction in the context of abstract component
model. Brigham Young University (2007)

4. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: extracting finite-state models from java source code. In: 22nd
International Conference on Software Engineering (ICSE), Limerick, Ireland, pp.
439–448 (2000)

5. Holzmann, G.J.: An analysis of bitstate hashing. In: Proc. 15th Int. Conf on Pro-
tocol Specification, Testing, and Verification, pp. 301–314 (1995)

6. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5), 279–295
(1997)

7. Holzmann, G.J., Joshi, R.: Model-driven software verification. In: 11th Interna-
tional SPIN Workshop on Model Checking of Software (SPIN), Barcelona, Spain,
pp. 76–91 (2004)

8. Holzmann, G.J., Smith, M.H.: Feaver 1.0 user guide.

Model Checking Abstract Components 59

9. Dritan Kudra and Eric G. Mercer. Finding termination and time improvement in
predicate abstraction with under-approximation and abstract matching. MS thesis,
Brigham Young University (2007)

10. Mercer, E., Jones, M.: Model checking machine code with the gnu debugger. In:
12th International SPIN Workshop on Model Checking of Software (SPIN), San
Francisco, CA, pp. 251–265 (2005)

11. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of c programs. Computational Complex-
ity, 213–228 (2002)

12. Pasareanu, C.S., Pelanek, R., Visser, W.: Concrete model checking with abstract
matching and refinement. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 52–66. Springer, Heidelberg (2005)

13. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: 15th
IEEE International Conference on Automated Software Engineering (ASE), Wash-
ington, DC, p. 3 (2000)

Generating Compact MTBDD-Representations

from Probmela Specifications

Frank Ciesinski1, Christel Baier1, Marcus Größer1,
and David Parker2

1 Technical University Dresden, Institute for Theoretical Computer Science, Germany
2 Oxford University Computing Laboratory, Oxford, UK

Abstract. The purpose of the paper is to provide an automatic trans-
formation of parallel programs of an imperative probabilistic guarded
command language (called Probmela) into probabilistic reactive module
specifications. The latter serve as basis for the input language of the sym-
bolic MTBDD-based probabilistic model checker PRISM, while Probmela
is the modeling language of the model checker LiQuor which relies on an
enumerative approach and supports partial order reduction and other
reduction techniques. By providing the link between the model check-
ers PRISM and LiQuor, our translation supports comparative studies of
different verification paradigms and can serve to use the (more com-
fortable) guarded command language for a MTBDD-based quantitative
analysis. The challenges were (1) to ensure that the translation preserves
the Markov decision process semantics, (2) the efficiency of the transla-
tion and (3) the compactness of the symbolic BDD-representation of the
generated PRISM-language specifications.

1 Introduction

Model checking plays a crucial role in analyzing quantitative behaviour of a wide
range of system types such as randomised distributed algorithms and randomised
communication protocols. One of the key ingredients of a model checking tool
for a randomized system is an appropriate modeling language which should be
expressive and easy to learn and must be equipped with a formal semantics
that assigns MDPs to the programs of the modeling language. For efficiency
reasons, it is also important that the MDP-semantics has a formalization by
means of rules that support the automated generation of a compact internal
representation of the MDP from a given program. The modeling languages of
most model checkers for MDPs use probabilistic variants of modeling languages
of successful nonprobabilistic model checkers. The MDP-fragment of the model
checker PRISM [9] uses reactive module-like specifications [1] extended by the
feature that statements can have a probabilistic effect. Probabilistic reactive
modules rely on a declaration of pre- and postconditions of variables. Thus,
their nature is rather close to symbolic representations which makes them well
suited for the generation of a multiterminal binary decision diagram (MTBDD)
[6,20] for the system. On the other hand, probabilistic reactive modules do not

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 60–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating Compact MTBDD-Representations 61

support complex data structures (e.g., arrays and channels) and require the
encoding of conditional or repetitive commands by means of pre- and postcon-
ditions. Modeling languages, like Probmela [2] which is a probabilistic dialect
of the prominent (nonprobabilistic) modeling language Promela [10], that com-
bine features of imperative programming language (such as complex datatypes,
conditional commands, loops) with message passing over channels and commu-
nication over shared variables are much more comfortable. Many protocols and
systems can be formally described within such a high-level modeling language
in a rather elegant and intuitive way. The MDP-semantics of a given Probmela-
program can be obtained as a DFS-based enumeration of the reachable states
(similar to the on-the-fly generation of the transition system for a given Promela-
program as it is realized in SPIN [10]). However, the generation of a compact
symbolic MTBDD-representation is nontrivial. Although several reduction tech-
niques that rely on an analysis of the underlying graph of the MDP or the control
graphs of Probmela-programs can be applied to make the quantitative analysis
competitive with the symbolic approach concerning the time required for the
quantitative analysis [5], the enumerative approach often fails to handle very
large systems with many parallel processes which can still be verified with the
symbolic approach by PRISM.

The purpose of this paper is to combine the advantages of both approaches
by providing an automatic translation from Probmela-programs into PRISM lan-
guage and to derive a compact MTBDD representation from the generated
PRISM code. The implementation of this translation (called Prismela) yields
the platform to use the (more comfortable) modeling language Probmela for the
MTBDD-based quantitative analysis of PRISM and supports comparative stud-
ies of different verification paradigms: the symbolic approach realized in PRISM
[9] and the enumerative approach of LiQuor [4]. The main challenges are

(1) to ensure that the translation preserves the Markov decision process seman-
tics, (without introducing extra steps and intermediate pseudo-states that
serve to simulate a single step of the original guarded command specification),

(2) the efficiency of the translation and
(3) the compactness of the symbolic BDD-representation of the generated

PRISM-module specifications.

Our work is conceptually related to [3], where a translation schema is pre-
sented that allows for the transformation of a core fragment of Promela to the
input format of the (nonprobabilistic) symbolic model checker SMV[15]. Beside
the probabilistic features (probabilistic choice, lossy channels, random assign-
ments), we treat some more language concepts than [3] such as message passing
via handshaking through synchronous channels. Furthermore, we describe the
translation of atomic regions in more detail and describe our implemented auto-
mated heuristics to calculate a good variable ordering for a given model. Another
symbolic approach for Promela specifications has been presented in [22] using a
nonstandard decision diagram, called DDD.

62 F. Ciesinski et al.

After a brief summary of the main concepts of Probmela and the PRISM in-
put language (Section 2), we present the translation (Section 3), discuss heuris-
tics that address item (3) and attempt finding good variable orderings for the
MTBDD-representation and determining the variable ranges (Section 4). In
Section 5, we explain the main features of our implementation on the top of
the model checkers LiQuor and PRISM and report on experimental results.

2 Preliminaries

We give here brief intuitive explanations on the syntax and semantics of the
(core fragment of the) modeling language Probmela and PRISM’s language, and
suppose that the reader is familiar with the main concepts of Promela [10] and
reactive modules [1].

The modeling language Probmela [2] is a probabilistic dialect of SPIN’s input
language Promela [10]. In the core language, programs are composed by a finite
number of processes that might communicate over shared (global) variables or
channels. Programs consist of a declaration (types, initial values) of the global
variables and channels, and the code for the processes. The processes can access
the global variables and channels, but they also can have local variables and
channels. We skip these details here and suppose for simplicity that the names
of all (local or global) variables and channels are pairwise distinct. The channels
can be synchronous or fifo-channels of finite capacity. The fifo channels can de-
clared to be either perfect or lossy with some failure probability λ ∈]0, 1[. The
meaning of λ is that the send-operation might fail with probability λ. The op-
erational behavior of the processes is specified in a guarded command language
as in Promela with (deterministic) assignments x = expr, communication actions
c?x (receiving a value for variable x along channel c) and c!expr (sending the
current value of an expression along channel c), the statement skip, conditional
and repetitive statements over guarded commands (if . . . fi and do . . .od), and
atomic regions. The probabilisic features of Probmela are lossy fifo-channels
(see above), a probabilistic choice operator pif[π1] ⇒ cmd1 . . . [πk] ⇒ cmdkfip
(where π1, . . . , πk are probabilities, i.e., real numbers between 0 and 1 such that
π1 + . . . + πk ≤ 1 and cmd1, . . . , cmdk are Probmela commands) and random
assignments x = random(V). The intuitive meaning of the pif . . . fip com-
mand is that with probability πi, command cmdi is executed next. The value
1− (π1 + . . . + πk) is the deadlock probability where no further computation of
the process is possible. In a random assignment x = random(V), x is a variable
and V a finite set of possible values for x. The meaning is that x is assigned
to some value in V according to the uniform distribution over V . In addition,
Probmela permits jumps by means of goto-statements.

Probmela also supports the creation, stopping, restarting and destruction of
processes. Since the PRISM language assumes a fixed number of variables and
modules, such dynamic features are not included in the translation and are
therefore irrelevant for the purposes of this paper.

Generating Compact MTBDD-Representations 63

PRISM’s input language [18]. For the purposes of the paper, only the fragment
of PRISM that has an MDP-semantics is relevant. In this fragment, a PRISM
program consists of several modules P = Q1‖...‖Qn that run in parallel. Each
module consists of a variable definition and a finite set of statements. The state-
ments are equipped with a precondition (guard) on the current variable evalua-
tion. The effect of the statements on the variables can be probabilistic. A PRISM
statement s ∈ Stmt has the form

[σ] guard → π1 : upd1 + ... + πk : updk

where guard is a Boolean condition on the variables and π1, . . . , πk are proba-
bilities, i.e., real numbers between 0 and 1 that sum up to 1. (If k = 1 then
π1 = 1 and we simply write [σ]guard → upd1 rather than [σ]guard → 1 : upd1.)
The terms updi are “updates” that specify how the new values of the variables
are obtained from the current values. Formally, the updates are conjunctions
of formulas of the type x′ = expr where x is a program variable and its primed
version x′ refers to the value of x in the next state and expr is an expression built
by constants and (unprimed) variables. If an update does not contain a conjunct
x′ = . . . then the meaning is that the value of variable x remains unchanged. (In
this way, the updates updi specify unique next values.) The symbol σ is either ε
or a synchronization label. Statements of different modules with the special sym-
bol ε (simply written [] rather than [ε]) are executed in an interleaved way, i.e.,
without any synchronization. The meaning of statements with a synchronization
label σ is that all modules have to synchronize over a statements labeled by σ.
No other channel-based communication concept is supported by the PRISM lan-
guage, i.e., there is no asynchronous message passing over fifo-channels and no
(explicit) operator modeling handshaking between two modules. Furthermore,
PRISM does not support data types like arrays.

Markov decision processes (MDP). Both Probmela programs and PRISM pro-
grams have an operational semantics in terms of a Markov decision process
(MDP) [19]. In this context, the MDP for a program consists of a finite state
space S and a transition relation →⊆ S × Act × Distr(S) where Act is a set of
actions and Distr(S) denotes the set of (sub) distributions over S (i.e., functions
μ : S → [0, 1] such that

∑
s∈S μ(s) ≤ 1). Furthermore, there is a distinguished

state that is declared to be initial.
The states in the MDP for a Probmela program consist of local control states

for all processes, valuations for the local and global variables and a component
that specifies the current contents of the fifo-channels. The transition relation
→ is formally presented by means of SOS-rules [2]. In our implementation, we
slightly departed from [2] and used a MDP-semantics that relies on a representa-
tion of each process by a control graph, which can then be unfolded into an MDP
and put in parallel with the MDPs for the other processes. (Parallel composition
is understood as ordinary interleaving and synchronization in the handshaking
principle for message passing over synchronous channels.)

In the sequel, let Var be the set of all global variables of the given program
and LocVari the set of local variables of process Qi. For simplicity, we suppose

64 F. Ciesinski et al.

that Var ∩ LocVari = ∅. We write Vari for Var ∪ LocVari, the set of variables
that can appear in the statements of process Qi. If V is a set of variables then
Eval(V) denotes the set of all (type-consistent) valuations for the variables in V .
In the control graph for process Qi, the nodes are called locations of Qi. They
play the role of a program counter and are obtained by assigning identifiers
to each command in the Probmela-code for Qi. The edges have the form �

g:α�
ν where � is a location, g is a guard (Boolean condition on the variables in
Vari) and α an action which can be viewed as a function α : Eval(Vari) →
Distr(Eval(Vari)) and ν a distribution over the locations of Qi. If ν assigns
probability 1 to some location �′ (and probability 0 to all other locations) then
we simply write �

g:α� �′. Furthermore, the trivial guard g = true is omitted
and we simply write �

α� ν rather than �
true:α� ν. For instance, the location

� assigned to the command pif[π1] ⇒ cmd1 . . . [πk] ⇒ cmdkfip has just one
outgoing edge �

id� ν where id is the identity1. Let �j be the location representing
the command cmdj then distribution ν is given by ν(�j) = πj and ν(�′) = 0 for
all other locations �′. If location � stands for a nondeterministic choice if[g1]⇒
cmd1 . . . [gk] ⇒ cmdkfi, then there are k outgoing edges �

gj :id� �j . Similarly, for

a loop do[g1]⇒ cmd1 . . . [gk]⇒ cmdkod, there are k outgoing edges �
gj :id� �j for

1 ≤ j ≤ k where �j is the location representing cmdj .2

If � represents an assignment x = expr, then � has a single outgoing edge
�

true:α� �′ with the trivial guard true and the action α that modifies x according
to expr and keeps all other variables unchanged. Again, location �′ stands for the
command after the command represented by � in the Probmela code for Qi. The
effect of an atomic regions is modeled in the control graph by a single edge that
represents the cumulative effect of all activities inside the atomic region.

For a given PRISM program, the MDP is obtained as follows. The states are
the evaluations of the program variables. Given a state s, then for each statement
stmt = []guard→ π1 : upd1 + . . . + πk : updk (in some module) where s |= guard

there is a transition s
stmt→ ν with ν(s′) =

∑
j πj where j ranges over all indices

in {1, . . . , k} such that updj evaluates to true when the unprimed variables are
interpreted accoding to s, while the values of the primed variables are given by
s′. Furthermore, s and s′ must agree on all variables x where x′ does not appear
in updj .

3 From Probmela to PRISM

We now suppose that we are given a Probmela program P (of the core language
without dynamic features). The goal is to generate automatically a PRISM pro-
gram P̃ that has the sameMDP-semantics anda compactMTBDD-representation.

1 i.e., id(η)(η) = 1 and id(η)(η′) = 0 if η �= η′

2 As in Promela loops are terminated by a special command break. Its control seman-
tics is given by a control edge from the location of the break-command to the next
location after the loop.

Generating Compact MTBDD-Representations 65

The general workflow of the translation (see Fig. 1) starts with a Probmela pro-
gram P consisting of n processes Q1, . . . , Qn and derives a PRISM program P̃
with n modules Q̃1, . . . , Q̃n. The global variables of P are also global in P̃ . Fur-
thermore, P̃ contains additional global variables that serve to mimic the arrays
and channels in P and other features of Probmela that have no direct transla-
tion. The last two steps attempt to minimize the MTBDD-representation and
rely on heuristics to determine a good variable ordering and algorithms that fix
appropriate bit-sizes (ranges) of variables (Section 4).

PRISM
modules

Probmela
specification
(.probmela)

trans-
lation

PRISM
modules and

variable ordering
variable
ranges

variable
ordering

step1 step 2 step 3

vars:
1.
2.
3....

PRISM
modules and

variable ordering
and ranges

vars:
1.
2.
3....

Fig. 1. Translation scheme from Probmela to PRISM

In the first step, each Probmela process is translated into an equivalent PRISM
module. It relies on the control graph semantics of Probmela and translates each
control edge into one or more PRISM statements. Given a Probmela process
Qi, the corresponding PRISM module Q̃i has the same local variables LocVari

and an additional integer variable pci that serves as a program counter for Qi.
Intuitively, the possible values of pci encode the locations of the control graph
of Qi. The rough idea is to replace each edge �

g:α� ν in the control graph of Qi

with the PRISM statement

[](g̃ ∧ pci = �) → ν(�1) : (α̃) ∧ (pci = �1) + . . . + ν(�k) : (α̃) ∧ (pci = �k)

where g̃ and α̃ are the translations of g and α to PRISM code with primed and
unprimed variables and �1, . . . , �k are the locations that have positive probability
under distribution ν.

This basic translation schema is directly applicable for deterministic or ran-
domized assignments. For instance, if α stands for the assignment x = y + z
then α̃ is the update (x′ = y + z). Since PRISM and Probmela support the
same operations on basic types, the translation of Boolean conditions and ac-
tions representing simple assignments is straightforward, even when they in-
volve more complex operations like multiplication, division, etc. Thus, a de-
terministic assignment given by an edge �

α� �′ in the control graph where
α is given by the command x = expr is translated into the PRISM statement
[]pci = � → (x′ = expr)∧ (pc′i = �′). For a randomized assignment, given by an
edge �

α� �′ where α is given by the command x = random(0, 1), the translation
schema yields the PRISM statement

[]pci = � → 1
2 : (x′ = 0) ∧ (pc′i = �′) + 1

2 : (x′ = 1) ∧ (pc′i = �′).

66 F. Ciesinski et al.

Arrays are very useful to model, e.g. memory slots or network packages. Probmela
uses a C-like syntax to define arrays (e.g., int[3]a defines an integer array with
3 cells). Access to the array cells is possible either using a variable, a constant or
an arithmetical expression as an index, e.g. a[i + j]. Arrays are also supported
in classical reactive modules [1], but they are difficult to implement if a reactive
module specification has to be transfered into symbolic representation and are
therefore not supported in PRISM. For an action α which contains an array access
of the form a[expr] the corresponding condition α̃ is obtained by introducing
fresh PRISM variables aj for all array cells a[j] and replacing a[j] by aj or
a′

j (depending on whether a[j] appears on the left or right hand side of an
assignment). A more complex case occurs if the array index to which is referenced
is an array access itself. For instance, if action α in the control edge �

α� �′ is the
assignment a[j[k]] = 7 then the corresponding PRISM code consists of several
statements that represent the possible combinations of values for k and j[k]:

[](pci = �) ∧ (k = 0) ∧ (j0 = 0)→ (a′
0 = 7) ∧ (pc′i = �′)

[](pci = �) ∧ (k = 0) ∧ (j0 = 1)→ (a′
1 = 7) ∧ (pc′i = �′)

[](pci = �) ∧ (k = 0) ∧ (j0 = 2)→ (a′
2 = 7) ∧ (pc′i = �′)

...
[](pci = �) ∧ (k = 1) ∧ (j1 = 0)→ (a′

0 = 7) ∧ (pc′i = �′)
[](pci = �) ∧ (k = 1) ∧ (j1 = 1)→ (a′

1 = 7) ∧ (pc′i = �′)
[](pci = �) ∧ (k = 1) ∧ (j1 = 2)→ (a′

2 = 7) ∧ (pc′i = �′)
...

The case where multiple arrays are connected via arithmetical operations, e.g.
a[j[k] + l[m]] = 42, can be treated in a similar way.

Remark 1. The treatment of probabilistic choices (pif . . . fip), nondeterminis-
tic choices (if . . . fi), loops (do . . . od) and jumps is inherent in our translation
schema which operates on the control graph semantics of Probmela (and where
the meaning of probabilistic, nondeterminstic choices and loops is already en-
coded). However, it is worth noting that our translation yields a rather natural
and intuitive encoding in PRISM for these language concepts. The translation of
a probabilistic choice pif[π1] ⇒ cmd1 . . . [πk] ⇒ cmdkfip, specified by an edge
�

id� ν (where ν(�j) = πj and �j is the location for cmdj) yields the PRISM
statement

[](pci = �) → π1 : (pc′i = �1) + . . . + πk : (pc′i = �k).

For a nondeterministic choice if :: g1 ⇒ cmd1 . . . :: gk ⇒ cmdkfi or loop

do :: g1 ⇒ cmd1 . . . :: gk ⇒ cmdkod specified by k control edges �
gj :id� �j we get k

PRISM statements [](g̃j)∧(pci = �)→ (pc′j = �j) for 1 ≤ j ≤ k. Similarly, the ba-
sic translation schema can directly be applied to treat Probmela’s goto-command,
formalized by control edges of the form �

g� �′ for a conditional jump. The corre-
sponding PRISM statement has the form [](g̃) ∧ (pci = �)→ (pc′i = �′). �

Generating Compact MTBDD-Representations 67

Perfect asynchronous channels can be regarded as arrays with restricted ac-
cess according to the fifo principles. In the internal representation of our model
checker LiQuor, asynchronous channels are realized as arrays with an additional
variable cfill that keeps track of the number data items currently stored inside the
channel. That is, cfill = k iff channel c contains k messages. A send operation c!v
is enabled iff cfill is strictly smaller than the capacity of c (which is defined in the
channel declaration), while a receive operation c?x requires cfill > 0. When exe-
cuting a send or receive operation, variable cfill is incremented or decremented,
respectively. The translation of send and receive operations into PRISM state-
ments can therefore be realized in a similar way as array access. E.g., the control
edge �

g:c!v� �′ where c is a perfect channel of capacity m and v a constant value
is translated into the PRISM statements:

[](pci = �) ∧ (g̃ ∧ cfill = j − 1) →
(pc′

i = �′) ∧ (c′
fill = j) ∧ (c′

j = cj−1) ∧ . . . (c′
2 = c1) ∧ (c′

1 = v),

while control edges �
g:c?x� �′ representing a receive operation are realized in

PRISM by the statements

[](pci = �) ∧ (g̃) ∧ (cfill = j)→ (pc′i = �′) ∧ (c′fill = j − 1) ∧ (x′ = cj)

where 1 ≤ j ≤ m. The shift operation that is inherent in the PRISM code for the
send operation serves to avoid that the same channel configuration is presented
by several states.

Lossy asynchronous channels. In Probmela, asynchronous channels can be de-
clared to be lossy, i.e. the enqueueing process loses the message with some prede-
fined probability. For such lossy channels, we modify the translation for perfect
asynchronous channels by dealing with a probabilistic choice for the PRISM state-
ment modeling the send operation. Suppose that the send operation of process
Qi is modeled by the control edge �

c!v� �′ and that the failure probability of c is
0.3. The corresponding PRISM statements are:

[](pci =�) ∧ (cfill =2) → 0.7 : (cfill = 3) ∧ (c′
2 = c1) ∧ (c′

1 =c0) ∧ (c′
0 =v) ∧ (pc′ =�′)+

0.3 : (pc′ = �)
[](pci = �) ∧ (cfill = 1) → 0.7 : (cfill = 2) ∧ (c′

1 = c0) ∧ (c′
0 = v) ∧ (pc′ = �′)+

0.3 : (pc′ = �)
[](pci = �) ∧ (cfill = 0) → 0.7 : (cfill = 1) ∧ (c′

0 = v) ∧ (pc′ = �′) + 0.3 : (pc′ = �)

Synchronous channels are syntactically defined in Probmela (as well in Promela)
as channels with capacity 0. They require pairwise message passing by handshak-
ing between processes. If c is a synchronous channel then the send operation c!v
can only be performed if there is another process ready to immediately execute
a receive operation c?x, where x is an arbitrary program variable. The PRISM
language also supports synchronization, but without message passing and not

68 F. Ciesinski et al.

in a pairwise manner. Instead, synchronization in PRISM language modules is
over the synchronization labels and requires the participation of all modules.
To translate Probmela’s communication actions for a synchronous channel c into
PRISM code, we generate appropriate synchronization labels all potential hand-
shakings along channel c. That is, for each pair of control edges e1 = �i

c?x� �′i
in the control graph of process Qi and e2 = �j

c!expr� �′j in the control graph
of another process Qj with matching handshaking actions we introduce a fresh
synchronization label σ(e1, e2) and use the following PRISM statements:

[σ(e1, e2)] (pci = �i) → (pc′
i = �′

i) ∧ (x′ = expr) (in module Q̃i)

[σ(e1, e2)] (pcj = �j) → (pc′
j = �′

j) (in module Q̃j)

[σ(e1, e2)] (pck = �k) → (pc′
k = �k) (in module Q̃k, k /∈ {i, j})

Note that the use of synchronization labels ci,j that just indicate the chan-
nel and synchronization partners would not be sufficient since a process might
request a synchronous communication actions at several locations.

Atomic regions collapse several commands to one single step. They can be used
to effectively shrink the state space if it is known that certain calculations need
not (or must not) to be carried out interleaved. To the user this language element
appears as a builtin mutual exclusion protocol that can be used to execute cer-
tain calculations exclusively without actually implementing a mutual exclusion
mechanism as part of the specification.

In the simple case, the atomic region consists of a sequential composition of
independent assigments, e.g., a = 1; b = 2; c = 3, which corresponds to the
PRISM statement []true → (a′ = 1) ∧ (b′ = 2) ∧ (c′ = 3). However, more
complicated types of atomic regions that are allowed in Probmela that require a
more involved translation into PRISM. First, atomic regions can write a single
variable more than once. Consider for instance the atomic region atomic{i +
+; i + +} which would (according to the simple translation scheme) lead to
an update ...− > (i′ = i + 1) ∧ (i′ = i + 1). Such statements, however, are
not allowed in PRISM. Instead, such commands must either be subsumed to
one expression (i.e. i′ = i + 2) or encoded in two separate transitions. Second,
atomic regions may contain (nested) probabilistic or nondeterministic choices
that can hardly be accumulated into a single step. To provide the PRISM code
for complex atomic regions, an additional global variable proc is added to the
PRISM program P̃.

We set proc to an initial value of −1 and extend the guards of PRISM state-
ments in each module Q̃i by the condition proc = −1∨proc = i. This ensures that
for proc = −1 all modules can potentionally perform steps, while for proc = i
the transitions of all module Q̃j with j �= i are disabled. Furthermore, we extend
the PRISM code for module Q̃i to ensure that when an atomic region of process
Qi is entered then the current value of proc is set to i and that proc is reset to
−1 when Qi leaves the atomic region.

Soundness of the translation. The reachable fragments of the MDPs for
a given Probmela program P without atomic regions and the generated PRISM

Generating Compact MTBDD-Representations 69

program P̃ are isomorphic. The isomorphism is obtained by identifying the state
s = 〈�1, . . . , �n, η〉 in the MDP for P with the state s′ = 〈pc1 = �1, . . . , pcn =
�n, η̃〉 in the MDP for P̃. Here, �i is a location in the control graph for process
Qi and η a variable and channel valuation. η̃ stands for the unique valuation
of the variables in P̃ that is consistent with η (i.e., agrees on all variables of
P and maps, e.g., the index-variables aj for an array a in P to the value of
the j-th array cell a[j] under η). To show that each outgoing transition has a
matching transition from s′, and vice versa, we can make use of the fact that
the outgoing transition from both s and s′ arise by the control edges from the
locations �i and that the PRISM statements are defined exactly in the way such
that the enabledness and the effect of the control edges is preserved. This strong
soundness result still holds if P contains simple atomic regions. In case that
P contains complex atomic regions then we can establish a divergence-sensitive
branching bisimulation [21,7] between the (reachable fragments of the) MDPs
for P and P̃ which identifies all (intermediate) states where the location of some
process is inside an atomic regions. Thus, P and P̃ are still equivalent for all
stutter-insensitive properties, e.g., specified by nextfree LTL or PCTL formulae.

4 Optimizations of the MTBDD Representation

The translation presented in the previous section combined with the PRISM tool
yields an automatic way to generate a symbolic representation of the MDP for a
Probmela program as a multiterminal binary decision diagram (MTBDD) [6,20].
In this section, we discuss techniques to obtain a compact MTBDD represen-
tation. First, we present a heuristic to find a good variable ordering for the
MTBDD of a given PRISM program. Second, we address the problem of finding
appropriate and small ranges for the variables in a PRISM program.

Determining good variable orderings automatically. Throughout this section, we
assume some familiarity with (MT)BDDs. (Details can be found, e.g., in [16,23].)
It is well-known that the size of an (MT)BDD for a discrete function can crucially
depend on the underlying variable ordering and that the problem of finding the
optimal variable ordering is NP-complete. There are several heuristic approaches
to find fairly good variable orderings. Some of them improve the variable ordering
of a given (MT)BDD, while others attempt to derive a good initial variable
ordering from the syntactic description of the function to be represented [8,17].
We follow here the second approach and aim to determine a reasonable variable
ordering from the PRISM code.

Given a PRISM program we abstract away from the precise meaning of
Boolean or arithmetic operations and analyze the dependencies of variables.
For this, we treat the PRISM statements as statements that access variables by
means of uninterpreted guards and operations. This leads to an abstract syn-
tax tree (AST) presenting the syntactic structure of the given PRISM program
P̃. For this, we regard the PRISM statements as terms over the signature that
contains constant symbols and the primed and unprimed versions of the program

70 F. Ciesinski et al.

variables as atoms and uses symbols like +, ∗, =, <,→ as function symbols. (The
probabilities attached to updates are irrelevant and can simply be ignored). The
node set in the AST for P̃ consists of all statements in P̃ and their subterms the
primed and unprimed versions of the variables of P̃ and nodes for all function
symbols that appear in the statements of P̃ (like comparison operators, arith-
metic operators, the arrows between the guard and sum of updates in state-
ments). Furthermore, the AST contains a special root node δ that serves to link
all statements. The edge relation in the AST is given by the “subterm relation”.
That is, the leaves stand for the primed or unprimed variables or constants.3

The children of each inner node v represent the maximal proper subterms of
the term represented by node v. The children of the root note are the nodes
representing the statements.

PRISM statements (example)

constants

primed and
unprimed
variables

function
symbols

3
1

+

[]a < 3 -> a'= a + 1
[]b < 3 -> b'= b + 1
[]b ==3 -> b'= b - 1

+

==

=
=
=

Fig. 2. Example AST

We now apply simple graph algorithms to the AST of P̃ to derive a reasonable
variable ordering for the MTBDD for P̃. For this, we adapt heuristics that have
been suggested for gate-level circuit representations of switching functions. We
considered the fanin-heuristic [14] and the weight-heuristic [11] and adapted
them for our purposes. The rough idea behind these heuristics is to determine a
variable ordering such that (1) variables that affect the program at most should
appear at the top levels, and (2) variables that are near to one another in the
dataflow should be grouped together.

The fanin-heuristic is based on the assumption that input variables that are
connected to the output variables via longer paths are more meaningful to the
function and should be ordered first. For this a breadth-first-search is performed
(starting from the leaves in the AST, i.e., the variables and constant symbols)
which labels all nodes of the graph with the maximum distance to an input node,
i.e., we compute the values d(v) for all nodes in the AST where d(v) = 0 for the
leaves and

d(w) = 1 + max{d(v) : v is a child of w}
3 At the bottom level, leaves representing the same variable or constant are collapsed.

So, in fact, the AST is a directed acyclic graph, and possibly not a proper tree.

Generating Compact MTBDD-Representations 71

for all inner nodes w. The second step of the heuristic performs a depth-first-
search starting at the root node with the additional property that the depth-
first-search order in each node w that is visited is according to a descending
ordering of the values d(v). The visiting order of the variables then yields a
promising variable ordering for the MTBDD for P̃ .

The weight-heuristic relies on an iterative approach that assigns weights to all
nodes of the AST and in each iteration the variable with the highest weight is
the next in the variable ordering. This variable as well as any node that cannot
reach any other variable is then removed from the AST and the next iteration
yields the next variable in the ordering. (We suppose here that initially the leaves
representing constants are removed from the AST.) In each iteration the weights
are obtained as follows. We start with the root node and assign weight 1 to it
and then propagate the weight to the leaves by means of the formula:

weight(v) =
weight(father(v))

|number of children of father(v)|

Determining variable ranges. Besides the variable ordering, the bitsizes (and
hence the value ranges) of the variables in a specification have great influence
on the size of the MTBDD. This is unfortunately even the case if it turns out
during model construction that in the reachable part of the model a particular
variable does not fully exploit its defined range. Thus, it is highly desirable that
the variable ranges in the PRISM model are as “tight” as possible. Often the
user does this by applying her/his knowledge about the model and choosing just
a reasonable range for each variable. Our tool also provides the possibility to
determine reasonable variable ranges automatically. The idea of the algorithm
for some program variable x is to perform a binary search in the interval [1, k],
where k is an upper bound for the bit size of x until an element i has been
found such that |MDP(P̃ , x, i)| = |MDP(P̃ , x, k)|. Here, |MDP(P̃ , x, i)| denotes
the number of states in the MDP for P̃ when the bitsize of x is i. For effi-
ciency purposes we implemented a modfied version of this algorithm that starts
with bitsize 1 and then increase it to the next 8 bit-border. If the model size
changes we decrease by 4 bit to see if the lower size suffices as well, and so
on.

5 Implementation and Results

The translation described in Section 3 and the heuristics of the previous section
have been implemented on the top of our model checker LiQuor [4] and linked
to the PRISM model checker. We called the resulting tool Prismela. It runs un-
der the operating system Microsoft Windows. Using a graphical user interface
(see Fig. 3) the user is able to load a Probmela model, control the translation
process regarding variable orderings, variable ranges and start PRISM to build
the model. It is also possible to combine user knowledge and automated proce-
dures, for instance when the user already knows the value domain of particular

72 F. Ciesinski et al.

Fig. 3. Graphical user interface and functionality

variables or wants to fix the position of certain variables in the variable order-
ing. Then these variables can be excluded from the heuristics and variable range
finding process. Furthermore the user has the option for manual changes on gen-
erated PRISM code that can then be exported for furthergoing use in PRISM.
The relevant parts of LiQuor (The Probmela-compiler, PASM assembler, the vir-
tual machine that generates the PRISM lanuage model from the assembler code)
were linked to Prismela so that the application runs independently from LiQuor.

Our model checker LiQuor [4] uses an intermediate representation of the
Probmela program rather than the textual representation of the Probmela
program itself. This intermediate representation is the result of a compiling
process done by a compiler that was designed to translate Probmela into an
assembler like formalism, called probabilistic assembler language (PASM), which
is executed on a stack-based virtual processor during the model checking pro-
cedure. The virtual machine is connected to a storage module that can save
and restore encountered the states of the MDP. The PASM-based approach has

Generating Compact MTBDD-Representations 73

model MDP states MDP trans. time(LiQuor) time(PRISM) MTBBD-nodes
UMTS(10/3/20) 17.952 18.539 < 1s 17s 132.895
UMTS(30/5/60) 177.416 186.063 2s 1166s 1.4 · 106

Din.Phil. (3) 635 2.220 < 1s < 1s 2.011
Din.Phil. (6) 411255 2.8 · 106 92s < 1s 9645
Din.Phil. (10) 2.2 · 109 26 · 109 – 3s 41.953
Leader El.(3) 1.562 4.413 < 1s < 1s 3410
Leader El.(6) 4.2 · 106 23 · 106 664s 6s 69.515
Leader El.(10) 1.9 · 1011 1.7 · 1012 – – 926.585

Fig. 4. Some results with case studies

several advantages. One of them is that the correctness of the Probmela compiler
can be easily be established by checking that the generated PASM code is con-
sistent with the control graph semantics of Probmela. The crucial point for the
purposes of this paper is that the generation of the PRISM language model can
start from the PASM code rather than the Probmela specification. The genera-
tion of the PRISM modules is obtained by realizing the above translation steps
for control edges on the level of PASM micro-commands. As a side effect, our
translation is not affected by future extensions of Probmela (as long as they yield
PASM code with a semantics based on control graphs as above) and is applicable
to any other formalism with a PASM-translator.

Figure 4 shows some experimental results of the translation scheme. Among
the case studies is one industrial motivated model (UMTS) that involves exam-
ining certain rare errors that occur when UMTS phones register to the network
provider. This model involves complex storage behaviour in internal buffers of
an UMTS end user device and uses almost every language element of Prob-
mela discussed in this paper. Values given in parantheses are parameters for
sizes and other characteristics and are not explained in detail. Larger num-
bers here indicate larger buffer tables and a larger number of potential entries
in these tables, thus resulting in a larger model. Furthermore the table con-
tains results from a randomized variant of the Dining Philosophers [13] (num-
ber of processes in parenthesis) and results from a randomized version of the
Leader Election protocol [12] (number of processes in parenthesis). The results
show that there exist models where one tool experiences great difficulties where
the other may succeed rather quick, and vice versa. As expected for smaller
models the explicit approach of LiQuor outperforms PRISM’s symbolic approach
while the state explosion problem is more severe for the explicit approach of
LiQuor.

Figure 5 illustrates the efficiency of our translation algorithm. The fanin-
heuristic (as well as randomly chosen orderings) leads to very large MTBDDs.
The amount of time to build the MTBDDs was always significantly lower when
the weight heuristic was applied to calculate a variable ordering.

74 F. Ciesinski et al.

7 Dining Philosophers,
3.3 · 106 states, 26 · 106 transitions.

15 PRISM variables (42 bits), 144 PRISM actions.
heuristic MTBDD nodes time
weight 9766 0.6s
fanin 51766 6s
random ordering (mean value) 61617 7s

10 Dining Philosophers,
1.9 · 109 states, 22 · 109 transitions.

21 PRISM variables (51 bits), 202 PRISM actions.
heuristic MTBDD nodes time
weight 19684 2,2s
fanin 891604 359s
random ordering (mean value) 356627 171

Leader Election, 7 instances,
62 · 106 states, 398 · 106 transitions.

28 PRISM variables (56 bits), 112 PRISM actions.
heuristic MTBDD nodes time
weight 1, 4 · 105 35s
fanin 2, 4 · 106 818s
random ordering (mean value) 2, 4 · 106 438s

Leader Election, 10 instances,
194 · 109 states, 17 · 1011 transitions.

28 PRISM variables (80 bits), 142 PRISM actions.
heuristic MTBDD nodes time
weight 886510 1081s
fanin — —
random ordering (mean value) — —

UMTS, 10/3/30,
35202 states, 36413 transitions.

23 PRISM variables (57 bits), 136 PRISM actions.
heuristic MTBDD nodes time
weight 218662 38s
fanin 233484 64s
random ordering (mean value) 252813 90s

Fig. 5. Influence of variable ordering heuristics on model generation with PRISM

6 Conclusion and Future Work

We presented an approach for the automatic translation of Probmela into the
PRISM language. We thus can obtain an MTBDD representation for the Probmela
program using PRISM. The translation process presented here is independent of
the input language Probmela as it works on control graphs. It is therefore flexi-
ble for extensions of the input language and is, in principle, applicable to other
modeling languages with a control graph semantics.

Generating Compact MTBDD-Representations 75

We also presented heuristics that serve to optimize the generation of the
MTBDD from PRISM programs. These heuristics operate only on PRISM level
and can therefore be applied to any PRISM program.

Future work on the presented topics include exhaustive comparisons between
the symbolic and explicit model checking approach for probabilistic systems.
Further improvements of the translation include language elements that were
not covered yet. Probmela (as well as Promela) allows for dynamic creation of
processes that would also be a desirable feature for Prismela.

Another target of future work will be the impact of static partial order reduc-
tion of Probmela programs on the use with symbolic model checkers.

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:
An International Journal 15(1), 7–48 (1999)

2. Baier, C., Ciesinski, F., Größer, M.: Probmela: a modeling language for communi-
cating probabilistic systems. In: Proceeding MEMOCODE (2004)

3. Baldamus, M., Schröder-Babo, J.: p2b: a translation utility for linking promela and
symbolic model checking (tool paper). In: Dwyer, M.B. (ed.) SPIN 2001. LNCS,
vol. 2057, pp. 183–191. Springer, Heidelberg (2001)

4. Ciesinski, F., Baier, C.: LiQuor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proc. QEST, pp. 131–132. IEEE CS Press, Los
Alamitos (2007)

5. Ciesinski, F., Baier, C., Groesser, M., Klein, J.: Reduction techniques for model
checking markov decision processes (submitted for publication, 2008)

6. Clarke, E., Fujita, M., McGeer, P., Yang, J., Zhao, X.: Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix representation. In: Interna-
tional Workshop on Logic Synthesis, Tahoe City (1993)

7. Größer, M., Norman, G., Baier, C., Ciesinski, F., Kwiatkoswka, M., Parker, D.: On
reduction criteria for probabilistic reward models. In: Arun-Kumar, S., Garg, N.
(eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 309–320. Springer, Heidelberg (2006)

8. Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.: On the use of
MTBDDs for performability analysis and verification of stochastic systems. Journal
of Logic and Algebraic Programming: Special Issue on Probabilistic Techniques for
the Design and Analysis of Systems 56(1-2), 23–67 (2003)

9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

10. Holzmann, G.J.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2003)

11. Minato, S.i., Ishiura, N., Yajima, S.: Shared binary decision diagram with at-
tributed edges for efficient boolean function manipulation. In: DAC 1990: Pro-
ceedings of the 27th ACM/IEEE conference on Design automation, pp. 52–57.
ACM Press, New York (1990)

12. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88(1) (1990)

76 F. Ciesinski et al.

13. Lehmann, D., Rabin, M.O.: On the advantage of free choice: A symmetric and
fully distributed solution to the Dining Philosophers problem (extended abstract).
In: Proc. Eighth Ann. ACM Symp. on Principles of Programming Languages, pp.
133–138 (1981); A classic paper in the area of randomized distributed algorithms.
They show there is no deterministic, deadlock-free, truly distributed and symmetric
solution to the Dining Philosophers problem, and describe a simple probabilistic
alternative.

14. Malik, S., Wang, A.R., Brayton, R.K.: Logic verification using binary decision
diagrams in a logic synthesis environment. In: ICCAD 1988: Digest of technical
papers, pp. 6–9. IEEE Press, Los Alamitos (1988)

15. McMillan, K.L.: The SMV system, symbolic model checking - an approach. Tech-
nical Report CMU-CS-92-131, Carnegie Mellon University (1992)

16. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD-
Foundations and Applications. Springer, Heidelberg (1998)

17. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham (2002)

18. PRISM web site, http://www.prismmodelchecker.org
19. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc., New York (1994)
20. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,

Somenzi, F.: Algebraic Decision Diagrams and Their Applications. In: IEEE /ACM
International Conference on CAD, Santa Clara, California, November 1993, pp.
188–191. ACM/IEEE, IEEE Computer Society Press (1993)

21. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing 2(2), 250–273 (1995)

22. Beaudenon, V., Encrenaz, E., Taktak, S.: Data decision diagrams for promela sys-
tems analysis. In: Software Tools and Technology Transfert (accepted for publica-
tion, 2008)

23. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. In: Monographs on Discrete Mathematics and Applications. Mono-
graphs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

http://www.prismmodelchecker.org

Dynamic Delayed Duplicate Detection

for External Memory Model Checking

Sami Evangelista�

DAIMI, University of Aarhus, Denmark
evangeli@daimi.au.dk

Abstract. Duplicate detection is an expensive operation of disk-based
model checkers. It consists of comparing some potentially new states, the
candidate states, to previous visited states. We propose a new approach
to this technique called dynamic delayed duplicate detection. This one
exploits some typical properties of states spaces, and adapts itself to
the structure of the state space to dynamically decide when duplicate
detection must be conducted. We implemented this method in a new
algorithm and found out that it greatly cuts down the cost of duplicate
detection. On some classes of models, it performs significantly better
than some previously published algorithms.

Model checking is a method to prove that finite state systems match their spec-
ification. Given a model of the system and a property, e.g., a temporal logic
formula, it explores all the possible configurations, i.e., the state space, of the
system to check the validity of the property. Despite its simplicity, its practical
application is limited due to the well-known state explosion problem: the state
space can be far too large to be explored in reasonable time or to fit within the
available main memory. Consequently, the design of methods able to cope with
this problem has gained a lot of interest in the verification community.

A first family of techniques reduce the part of the state space that needs to be
explored in such a way that all properties of interest are preserved. An example
of such a technique is partial order reduction that limits redundant interleavings
by exploiting the independence of some actions.

A more pragmatic approach does not aim at reducing the size of the problem
but rather at making a more subtle use of the available resources (or augment
them) to extend the range of problems that can be analyzed. Many options
are available. We can, for example, compress states to virtually decrease the
problem size, distribute the search to benefit from the aggregate computational
power and memory of a cluster of machines, or make use of external memory.

In this work we look at this last option. Using disk storage instead of main
memory is indeed very tempting since it considerably increases the amount of
available memory thereby making it possible to solve problems that could not
be solved even with the help of sophisticated techniques such as partial order

� Supported by the Danish Research Council for Technology and Production.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 77–94, 2008.
© Springer-Verlag Berlin Heidelberg 2008

78 S. Evangelista

reduction. As a counterpart, disk accesses are much slower. In addition, the
data structure used to store states is typically randomly accessed, involving an
important runtime penalty when kept on disk. Hence, the use of disk storage
requires a dedicated algorithm to be effective.

Most external memory algorithms are somehow based on the key idea of
delayed duplicate detection. When a state is generated, the algorithm does not
immediately check if the state has already been visited, i.e., if the state is a
duplicate, since it would require a new disk access, and potentially the load of
a disk block. Instead, the state is put into a candidate set that contains all the
potentially new states and the comparison to the visited set stored on disk is
delayed until it can be efficiently conducted. Hence, a large number of individual
disk look-ups is replaced by a single file scan.

This paper reviews some algorithms proposed by the model checking and ar-
tificial intelligence community and introduces a new duplicate detection scheme
based on breadth-first search. We refer to this scheme as dynamic delayed dupli-
cate detection. Its principle is to exploit some typical properties of state spaces
to decrease the cost of duplicate detection and to dynamically collect some data
on the structure of the state space that will be used to decide when duplicate
detection should be delayed or conducted.

Organization of the paper. We recall in Section 1 some basic elements on
graphs and review existing works on disk based model checking. Section 2 in-
troduces a simple variation of hash based delayed duplicate detection [10] that
will be the basis of our dynamic algorithm. Some structural properties of state
spaces that can be exploited are presented in Section 3. Section 4 contains the
main contribution and introduces dynamic delayed duplicate detection that is
experimentally evaluated in Section 5. Finally, Section 6 concludes this paper.

1 Background

Definitions and notations. We briefly give the ingredients that are relevant
for understanding this paper. Figure 1 will help us illustrate these notions.

A state space is a directed graph (S, T, s0) where S is a finite set of states,

21

4 5

6

0

3

L (3)

L (0)

L (1)

L (2)

Fig. 1. A state space

T ⊆ S×S is a set of transitions, and s0 ∈ S is the initial
state. A state s′ ∈ S is a successor (resp. predeces-
sor) of state s ∈ S, if (s, s′) ∈ T (resp. (s′, s) ∈ T).
We denote by succ(s) (resp. pred(s)) the set of suc-
cessors of s (resp. predecessors). The distance of a
state s, denoted by d(s) is the length of the shortest
path from s0 to s. The states at level k, noted L (k),
is the set of all states which distance is k. It is de-
fined recursively as L (0) = {s0}, L (k + 1) = {s′ ∈
S|∃s ∈ L(k) ∩ pred(s′)} \ ∪k

i=0L (i). The height of a
state space is its number of levels and its width is the
size of its largest level, i.e., maxk |L (k)|. In our ex-
ample, the height and width are respectively 4 and 3.

Dynamic Delayed Duplicate Detection 79

The average degree is the ratio |T |
|S| . t = (s, s′) is a forward transition if

d(s′) = d(s) + 1. Otherwise it is a backward transition and we define its
length as d(s′) − d(s). All transitions of our example are forward transitions
except (1,2) and (6,1). Their lengths are respectively of 0, since 1 and 2 are on
the same level, and 2.

We denote by R(k) the successors of states of level k, i.e., s ∈ R(k) ⇔ ∃s′ ∈
L (k) ∩ pred(s). More generally, Rn(k) consists of all the states reachable from
level k by a path of length n. Formally, s ∈ Rn(k) ⇔ ∃s′ ∈ L (k), (s1, s2),
. . . , (sn, sn+1) ∈ T |s1 = s′ ∧ sn+1 = s. The successors of states of level 1 in
figure 1 is the set R(1) = L (2) ∪ {2} = {2, 4, 5} and R2(1) = {4, 5, 6}. By
definition, it holds for any d that L (d + 1) ⊆ R(d) since R(d) contains level
d + 1 plus all the states reachable from level d by a backward transition.

A breadth-first search (BFS) explores a state space by maintaining a set of
visited states and a FIFO queue filled with states to explore. Each state dequeued
is expanded and those of its successors that do not belong to the visited set are
inserted into it and enqueued to be later expanded. Applying a FIFO strategy
ensures that levels of the state space will be processed one by one: if a state
s of level k is dequeued then all states of levels l < k have been processed
and belong to the visited set. A transition (s, s′) generates a duplicate s′ if s′

already belongs to the visited set when s is processed. Obviously, any backward
transition will generate a duplicate when applying BFS.

Related work. Dill and Stern [3] were the firsts to propose the use of external
memory as a way to enhance the capabilities of explicit model checkers. Their
BFS algorithm stores all the states of the current level in a RAM hashtable while
previous levels are stored on disk. The search for duplicates occurs each time a
BFS level has been completed or the table becomes full. The disk file is then read
and duplicates in memory are deleted. Remaining states are written on disk and
inserted in the memory queue. Grouping disk lookups is the strategy of most
disk based model checkers. It allows to read or write whole blocks of states at
once, while checking for each state individually would likely require to reload
a new block from disk. This technique is known as delayed duplicate detection
(DDD): the resolution is postponed until it may be efficiently conducted.

Della Penna et al. [17,16] proposed two algorithms that benefits from a prop-
erty usually exhibited by communications protocol: backward transitions are
usually short. Hence, in BFS, they usually lead to a recently visited state. The
first one, [17], is a cache based algorithm that only keeps recent states in memory
while the queue is on disk. The second one, [16] is a variation of the initial disk-
based algorithm of [3]. Instead of systematically comparing the set of candidate
states to the visited set, it is only checked against some blocks of states chosen
randomly according to their age.

Bao and Jones observed in [1] that duplicate detection is the most time con-
suming operation of the algorithms of [3] and [16]. They proposed a new algo-
rithm, based on a partitioned hash table, that mimics a distributed search and
behaves better than these two.

80 S. Evangelista

With the same motivation, the algorithm of [2] dynamically estimates the
costs of performing/delaying duplicate detection and chooses the alternative that
a priori seems preferable. Our algorithm is inspired from this principle but also
exploits some usual properties of state graphs and changes it strategy according
to the specific characteristics of the model.

Hammer and Weber [5] designed a hybrid algorithm that adapts itself to the
graph: as long as memory is sufficient it remains a pure RAM based algorithm
and it slowly shifts to a disk based algorithm as memory becomes scarce.

In [7], an I/O efficient solution is presented for directed model checking. States
are organized into buckets according to some heuristics. Files are associated to
buckets in order to store overflowing states. This distribution greatly eases the
search for duplicates and the parallelization of the algorithm [8].

Korf introduced in [9] and [10] the principles of sorting-based (SDDD) and
hash-based delayed duplicate detection (HDDD) both based on the generic fron-
tier search algorithm that only stores states to be expanded (the frontier). This
algorithm cannot really be applied in the context of model checking as it re-
quires the ability to compute the predecessors of a state, an operation that is
impossible when the graph is given implicitly as an initial state and a succes-
sor function. After each expansion phase SDDD sorts resulting files in order to
detect duplicates while HDDD avoids the complexity of sorting by distributing
states onto multiple files using two orthogonal hash functions.

In structured duplicate detection [18] an abstraction of the system is used to
determine when to load/unload states from/to disk. This technique has a strong
potential but heavily relies on the quality of the abstraction. This problem may
be overcome by partitioning the edges [20] or by automatically extracting an
appropriate abstraction from the system description [19].

2 A Variation of Hash-Based Duplicate Detection

Hash based delayed duplicate detection (HDDD) is a very successful strategy for
external memory graph search, already applied to state spaces with more than
1012 states [11]. Unfortunately, in its basic version, it is based on the generic
frontier search that cannot be applied in the context of implicitly given graphs
that we have in model checking. We present in this section a simple breadth first
search (BFS) variation of the algorithm of Korf [9]. We refer to this algorithm
as bfs-hddd. Exploring the state space in breadth-first order has several advan-
tages. The most obvious one is its ability to report safety violations of minimal
lengths. Secondly, as opposed to, e.g., depth first search, BFS can be easily par-
allelized. This requires some synchronizations [8], but if the load is well balanced
among processors (or nodes of the network), which is the case in the algorithm
of [9], it is likely that latency will be negligible. Last, it is possible with BFS to
exploit some interesting properties of state spaces to reduce duplicate detection
times and fasten the search. This is perhaps the most interesting property of
BFS for us since it is an important component of our new algorithm.

Dynamic Delayed Duplicate Detection 81

The bfs-hddd algorithm (see figure 2) partitions the queue of states to visit
into N files Q1, . . . ,QN and the visited set into N files V1, . . . ,VN . In a first step,

Memory
cache

Successors
generation

detection

New states

V1C1Q1

New states

DuplicateCN VN

Duplicate
detection

QN

Fig. 2. An iteration of bfs-hddd

queued states are processed, their suc-
cessors generated and inserted into a
memory cache. If this one becomes
full its content is flushed to the candi-
date set, also partitioned in a set of N
files C1, . . . , CN . A first hash function is
used to map states to the appropriate
candidate file ensuring that duplicates
will be inserted into the same file. Once
all queued states have been expanded
the cache is flushed to candidate files
and the duplicate detection phase be-
gins. In the second step each partition is processed one by one. The content of a
candidate file is hashed to memory using a second hash function, thus detecting
duplicates in this file. Then, the states of the corresponding visited file are read
one by one and deleted from memory. Remaining states in memory are therefore
new and can be written in the visited file as well as in the queue file so that
they can be processed by the algorithm at the next iteration. Once all partitions
are processed the algorithm can move to the next BFS level. Before that, the
candidate set is emptied.

Partitioning the state space has two advantages. First it is helpful to parallelize
the algorithm as shown in [11]. Moreover, it virtually multiplies by N the number
of candidates that may reside in memory allowing us to perform a single duplicate
detection per level. This is in constrat with algorithms of [3] and [16] which also
perform a detection when the cache is full. Hence, bfs-hddd should behave much
better with large models for which only a small fraction of the state space can
be kept in RAM. However, duplicate detection still remains a costly operation,
especially if the graph has a large height. Detections are very cheap at the
beginning of the search when the visited set is small but on the last levels each
one entails to read from disk a large portion of the state space. More generally,
if H is the height of the graph, the number of states read from the visited files
during duplicate detections will exactly be

∑
s∈S(H − d(s)). Some interesting

properties usually exhibited by state spaces can however help us to reduce the
cost of this operation and design a new algorithm that behaves better than
bfs-hddd.

3 Some Structural Properties of State Spaces

State spaces, as opposed to random graphs, have some typical properties [13]
that can be exploited in automated verification. For instance, disk based model
checkers can exploit transition locality [17,16]. Tools can also decide which re-
duction technique to apply depending on a partial knowledge of the graph [15].

82 S. Evangelista

The BEEM database [14] is a precious tool to analyze such properties. It
contains more than 50 parametrized models and 300 actual instances of vari-
ous families. Three observations, that have some consequences in BFS, can be
made. The reader may consult [4] for further details on the data provided in this
section.

Observation 1: Low proportion of backward transitions. First, as already
shown in [17], most transitions of state spaces are forward transitions. The aver-
age rate of backward transitions we computed is around 20%. If we only consider
communication protocols this rate goes down to approximately 15%.

Observation 2: Few typical lengths for backward transitions. A closer
look at the backward transitions also reveals a non uniform distribution of their
length as already pointed out in [13]. There are usually a few typical lengths and
most backward transitions have one of these lengths. For example, we observed
that on 95% of the database instances 5 lengths covered more than 50% of all
backward transitions. Even one single length cover more than 50% of backward
transitions in 53% of the instances.

Observation 3: Regular evolution of levels. We measured the progression
of rate |L (l+1)|

|L (l)| , that we shall call the level progression rate (or more simply
progression rate), and found out that the size of levels evolve in a rather regular
way and there are usually no huge variations of this rate between close levels.
When this is not the case we however noticed that corresponding levels are
rather small, meaning that the number of states involved is negligible. Some
simple models, e.g, the tower of Hanoi, do not have such a property but if we
look at more interesting ones like communication protocols, this observation is
often valid. The progression rate generally follows a three step scenario. First
levels are characterized by a high rate: levels grow quickly at the beginning of
the search. Then the progression rate quickly collapses to a value close to 1 and
during a long period stays around this value while tending to decrease. Finally,
on last levels, the rate drops down to 0.

4 Dynamic Delayed Duplicate Detection

We propose in this section, dynamic delayed duplicate detection (or DDDD for
short), as an alternative to existing duplicate detection schemes. DDDD is based
on two key ideas. First, it exploits the structural properties usually exhibited by
state spaces that we have discussed in the previous section. We thus obtain a
specialized algorithm, especially designed for state spaces having those proper-
ties. Second, we dynamically collect data on the graph structure so that the
algorithm can adapt itself on-the-fly to its particular characteristics. Thus, even
if the model is not, a priori, suited, the algorithm will progressively change its
strategy to fit with the model.

Dynamic Delayed Duplicate Detection 83

4.1 Principle

A breadth first search algorithm based on the DDDD discipline works basically
as the algorithm presented in section 2. The only difference is the following one:
instead of systematically comparing the candidate set to the visited set at each
level, we only perform a duplicate detection when we consider it to be necessary.
This decision will mainly be based on data collected by the algorithm during
the search. The general principle of DDDD is also the one of [16] and [2] and
is motivated by the first observation made in section 3: when we expand the
states of level l, it is likely that most of the states reached will not belong to the
visited set. Thus, looking for duplicates may be almost useless. Instead we store
R(l) on disk in a candidate set that will be used later during the next duplicate
detection. The states expanded at the next BFS level will be those of R(l) and
their successors, i.e., R2(l), will also be written in the candidate set, and so on.
Only when we decide to perform duplicate detection will the candidate states be
hashed to memory and the visited states will be read in order to delete duplicates
in memory as done by the bfs-hddd algorithm. Remaining states in memory are
inserted to the visited set and those which are on the “front” of the candidate
set, i.e., the states of Rn(l) (if the detection occurs at level l + n) minus the
duplicates removed, are later expanded.

The figure below presents a snapshot of visited and candidate sets during the
execution of our algorithm. Visited states belongs to L (0)∪· · ·∪L (l) while the
candidate set contains all states reachable from level l via a path of length n or
less. The latter is actually a multi-set since a state may belong to R(l), R2(l),
. . . , and Rn(l).

L (0) L (1) L (l) R(l) Rn(l)
V C

Though this strategy is expected to decrease I/Os it has a cost since a state
may be reexpanded during the search: any target of a backward transition (or
one of its descendant) is likely to be revisited. Since the expansion of a duplicate
necessarily leads us to other duplicates, the proportion of duplicates visited may
quickly grow even if the graph has few backward transitions. For instance, if
90% of transitions of forward transitions, we can expect to approximately have
10% of duplicates on level l + 1, then 1 − 0.92 = 19% on level l + 2 and more
generally, a proportion of 1− 0.9n duplicates on level l + n.

4.2 The Algorithm

The bfs-dddd algorithm (see figure 3) partitions the visited and candidate sets
as well as the BFS queue into N files V1, . . . ,VN , C1, . . . , CN and Q1, . . . ,QN . A
unique hash function h is used to map states to these files. The only global data
structure to reside in memory is the memory cache Cache implemented by a
chained hash table. States overflowing from Cache are stored in some temporary

84 S. Evangelista

files T1, . . . , TN
1. Those are candidate states and could be directly written in

candidate files but we prefer to avoid it as it would involve the possibility to
have multiple instances of the same state in a candidate file. Since it is likely
that candidate files will be read several times (especially with the optimization
described in Section 4.4) this seems preferable.

The search begins with the insertion of the initial state in the appropriate
queue file. Each level l is then processed in two steps2.

Procedure expand first reads states from the queue and inserts their succes-
sors into the cache. If Cache becomes full (lines 4-8) a state s′′ is chosen, written
to the appropriate temporary file if not stored yet and deleted from Cache. Once
this expansion phase terminates unstored states residing in the cache are written
in temporary files (lines 11-14). At this point these will trivially contain all the
states of R(l) and may contain several occurrences of the same state. It may
happen if a state is removed from the cache and reached again later within the
same expansion phase.

The merge procedure decides whether it will perform duplicate detection or
postpone it to a future level (line 1) and then processes partitions one by one.

States of the temporary file are first hashed to memory in table H, hence
detecting duplicates in this file (line 4).

If duplicate detection is delayed (lines 5-6), the content of H is written back to
the candidate file in order to be processed during the next duplicate detection.

Otherwise (lines 7-11) the states of the candidate file are also hashed to mem-
ory. The visited states of this partition are read from disk and deleted from H.
States in H are therefore new and written to the visited file. Note that a boolean
value is associated to the states of H in order to identify states in front of the
candidate set that will be expanded at the next level (the ones in the temporary
file) from those of previous levels which have already been expanded (the ones
of the candidate file).

The last step (lines 12-13) consists of writing in the queue file the front states
of the candidate set identified as new so that they can be expanded later.

4.3 Deciding When to Perform Duplicate Detection

One question still remains: when should we perform or postpone duplicate detec-
tion. Delaying detection comes at the cost of possibly revisiting some duplicates
while performing it requires to read the whole visited and candidate sets from
disk. The underlying principle of the decision procedure is therefore to delay the
detection as long as it estimates that the number of duplicates visited so far is too
small to justify a duplicate detection. It is of course impossible to know the num-
ber of duplicates in the candidate set as it would require to actually perform the
detection, but we can still estimate it from our knowledge of the graph structure.
1 Thereafter we shall use the term of visited, candidate and temporary sets when

speaking of states written in the corresponding files. We write V = ∪iVi, C = ∪iCi

and T = ∪iTi.
2 It is actually possible to merge both procedures to save some disk accesses but we

separated them for sake of clarity.

Dynamic Delayed Duplicate Detection 85

bfs-dddd ()
1 for i ∈ 1..N do
2 Vi := ∅ ;; Ci := ∅ ;; Qi := ∅
3 Cache := ∅ ;; Qh(s0).write(s0)
4 while ∃i ∈ 1..N with Qi �= ∅ do
5 expand() ;; merge()
merge ()
1 detection := doDetection()
2 for i ∈ 1..N do
3 H := ∅ ;; Qi := ∅
4 for s ∈ Ti do H.insert(s, true)
5 if ¬detection then
6 for (s,) ∈ H do Ci.write(s)
7 else
8 for s ∈ Ci do H.insert(s, false)
9 for s ∈ Vi do H.delete(s)
10 for (s,) ∈ H do Vi.write(s)
11 Ci := ∅
12 for (s, exp) ∈ H do
13 if exp then Qi.write(s)

expand ()
1 for i ∈ 1..N do Ti := ∅
2 for i ∈ 1..N, s ∈ Qi, s

′ ∈ succ(s) do
3 if s′ /∈ Cache then
4 if Cache.isFull() then
5 s′′ := Cache.choose()
6 if ¬s′′.stored then
7 Th(s′′).write(s′′)
8 Cache.delete(s′′)
9 Cache.insert(s′)
10 s′.stored := false
11 for s ∈ Cache do
12 if ¬s.stored then
13 Th(s).write(s)
14 s.stored := true

Fig. 3. The bfs-dddd algorithm based on dynamic delayed duplicate detection

Visiting a duplicate is an expensive task as it implies many costly operations.
First, the state must be written (read) to (from) the queue file and the candidate
file. Then it is expanded3 and its successors are written to temporary files to
be later read again. To estimate both alternatives, the algorithm assigns a cost
to each of these basic operations: ec for expansions, rc for read accesses and wc
for write accesses4. We can thus approximate the cost of visiting a duplicate by
ec+(rc+wc) · (2+deg) where deg is the average degree of the graph. Note that,
due to cache effect, not all the successors may be written in the temporary files,
but we will still use the average degree as an over approximation.

Since duplicate detection implies the read of the whole visited and candidate
files we can therefore estimate that delaying detection should be preferred if:

(|C|+ |V|) · rc > |duplicates| · (ec + (rc + wc) · (2 + deg)) (1)

where |duplicates| is the total number of duplicates in candidate and temporary
files.

This is naturally a rather coarse approximation. What really matters in our
sense is that the decision procedure makes its choice on the basis of:

3 An expansion implies several non trivial operations that represent the most time
consuming tasks of RAM based model checkers: computation of enabled actions,
generation of successors and insertion of the successors into the cache usually via an
encoding into bit strings.

4 In our implementation we arbitrarily set rc = 1, wc = 2 and ec = 2 which is clearly
not the best solution. We propose in section 4.5 a method to set these parameters.

86 S. Evangelista

=

of L (l + 1) of level l + 1
Candidates

R(l)

Estimation
L (l − 2) L (l − 1) L (l)

Estimation
of duplicates

Fig. 4. Estimating the number of duplicates in the candidate set

– the size of the candidate and visited sets: looking for duplicates is very cheap
on the first levels and its cost increase as we go deeper into the graph.

– the proportion of backward transitions, which has a direct impact on the
number of duplicates: numerous backward transitions will naturally intro-
duce many useless state revisits which in turn mean additional disk accesses.

– the average degree of the graph. This third factor is perhaps less intuitive
but still should be considered. A high degree weighs down the cost of visiting
duplicates insofar as such a revisit may, in the worst case, lead to approxi-
mately deg read/write accesses to temporary files.

Some parameters of formula (1) are available, like |V|, |C| or the average degree
deg that can be estimated from our partial exploration of the graph. Computing
|duplicates| is more problematic as it requires to actually perform duplicate
detection which is exactly what we want to avoid. Instead, we approximate it
using observation 3 from the previous section: the size of levels does usually
progress in a regular way. Thus, we can roughly forecast the size of a level from
previous ones. We can then reasonably assume that the difference between what
we expected and the actual size of the candidate set can be explained by the
presence of duplicate candidates.

This forecast process can be illustrated with the help of figure 4. We notice a
decrease in previous levels l− 2, l− 1 and l. By making the hypothesis that this
trend will continue we forecast the size of level l + 1. We then deduce from this
forecast an estimation of the number of duplicates.

Thereafter, we shall denote by lpri = |L (i+1)|
L (i) the level progression rate of level

i, l the level of the last detection and l + n the current level. The estimation of
some value v will be denoted by v. The number of duplicates stored in candidate
and temporary files is estimated as follows.

|duplicates| =
n∑

i=1

crl+i ·min(0, |Ri(l)| − |L (l + i)|) (2)

A correction rate crl+i, which purpose will be made clear thereafter, is used to
over-approximate our estimation.

The size of some level l + i is then estimated from the last level we actually
measured, i.e., level l, by combining it with the successive (estimated) progression
rates lprl, . . . , lprl+i−1.

|L (l + i)| = |L (l)| ·
l+i−1∏

j=l

lprj (3)

Dynamic Delayed Duplicate Detection 87

α+ = 0.9, α− = 0.3
α+ = 0.3, α− = 0.9
α+ = 0.5, α− = 0.5

♦

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦

♦
α+ = 0.7, α− = 0.2

+

+
+ +

+

Fig. 5. Curve used to estimate the progression of levels

This simplifies our task since the level progression rate can be estimated from
the data previously collected on the graph structure and the size of Ri(l) is
available.

Estimation of |Ri(l)|. For any i < n, Ri(l) is stored in candidate files and
we can hence easily know its size. Rn(l) is stored in temporary files and as the
cache may not be large enough, T is actually a multi-set of Rn(l). Computing
the actual size of Rn(l) would require to merge temporary files, i.e., remove
duplicate in these, before calling doDetection, which is a non trivial operation.
The solution we implemented is to only merge a few files in order to have an
idea of the average multiplicity of each state of Rn(l) in T and hence, a more
accurate estimation of |Rn(l)|. Note that if the cache is large enough to contain
Rn(l) then |T | = |Rn(l)| and this operation is not necessary.

Estimation of the level progression rate. Using observation 3 made in
Section 3, we will assume that the progression rate evolves in a regular way and
can be captured through the following formula.

lpri+1 =

{
lpri · (lpri + ε)−α+

if lpri ≥ 1
lpri · (lpri − ε)+α−

else
(4)

where α+ ∈ [0, 1] (resp. α− ∈ [0, 1]) determines how fast a progression rate
greater than 1 (less than 1) drops down to 1 (0); and ε is used, first to ensure
that the rate will eventually reach 1 and later 0, and second to determine how
long the progression rate will stay around 1. In our implementation, we set its
value to 0.01.

We use two different values α+ and α− as, in general, the progression rate
decreases faster when it is above 1 than below. Therefore it is preferable that
α+ > α−. In our implementation, we set α+ = 0.7 and α− = 0.2 as, on the
average, these gave us the best results. To give to the reader an idea of the
progression induced by this formula, we have plotted in figure 5 the curves for
some values of α− and α+.

The progression rate of the current level can then be forecasted from the
previous one using formula (4). If a detection occurred on the current level k,
the forecast is made from the actual rate since we measured L (k − 1) and L (k).
Otherwise, it is based on the forecasts made on previous levels.

88 S. Evangelista

Correcting the estimation. It is clear that the quality of our estimations will
degrade as we move away from the level of the last detection. As a defensive
approach we will over-approximate our estimation of the number of duplicates
by a correction factor that grows exponentially as we delay detection:

crl+i = (1 + β)i−1 (5)

Hence, we will avoid long series of levels without detection. As on the first levels
following a detection the estimation is usually satisfactory (see experience 1 in
Section 5), β should be set to a very small value, e.g, 0.02 in our implementation.

4.4 Performing Partial Duplicate Detections

A strategy allowing to reduce revisits is, when detection is delayed, to select a
subset of disk states and perform a partial duplicate detection. The question is
how to select these states in such a way that it helps us to delete many duplicates
while still not asking for too much work with respect to a full duplicate detection.

In [16], it was suggested to select states randomly according to the locality
principle. As previously suggested by Pelánek in [13], our algorithm rather ex-
ploits the second statistical fact described in section 3: backward transitions
usually have a few typical lengths. Hence, using our knowledge of the graph we
know in which part of the file we should look to delete many duplicates. To this
end, the algorithm records for each partition p and level l the position in the
visited or candidate file of the first state of level l in partition p. States of a given
level can then be recovered using a seek operation in the appropriate file. After
each full duplicate detection we then select the k most typical lengths observed
so far (k being a user defined parameter) and use these to select stored states
during the next partial duplicate detections.

4.5 Extensions

We discuss in this section two possible extensions to the method.

Sampling the state space. bfs-dddd assigns a cost to each basic operation
(wc for a write access, rc for a read access and ec for a state expansion) to
decide when to perform duplicate detection. For ideal performance these should
be tuned according to the specific characteristics of the model. The value rc
and wc should indeed reflect the size of the state vector while ec should be set
according to the state generation speed. A possible way to address this problem
is to perform a first “training run” using only RAM, as in [6], to collect some data
on the model that can be used for a second run using bfs-dddd. Not only is it
useful to tune these parameters, but it can also give us some precious knowledge
of the graph structure, e.g., on the length of backward transitions, that could
later be exploited by bfs-dddd.

Profiting from a static analysis of the model. Backward transitions are of-
ten triggered by some specific higher level transitions in the system specification.

Dynamic Delayed Duplicate Detection 89

cambridge.4 - 60 463 states, err = 0.05 bopdp.3 - 1 040 953 states, err = 0.13

pgm protocol.5 - 382 731 states, err = 0.20 firewire link.2 - 55 887 states, err = 0.46

Fig. 6. Experiment 1: comparison of the BFS level graph with our forecast

For instance, end loop statements often close cycles and hence are the source of
backward transitions. On the opposite, some actions, such as variable incremen-
tations, will never generate backward transitions. It could thus be interesting to
perform a static analysis of the model prior to state space exploration to identify
actions that could potentially lead to such transitions. These data can then be
used by bfs-dddd to estimate the probability of a newly generated candidate to
be a duplicate, depending on the actions associated to the incoming arcs of the
state. For states marked as “probably duplicate” it may be interesting to delay
their expansion to the next duplicate detection (if the detection revealed that it
is actually not a duplicate) rather than expanding them at the next expansion
phase. Once again, a first training run may be useful to identify more accurately
those actions in the models.

5 Experiments

The bfs-dddd algorithm has been integrated into the ASAP verification tool
[12]. We report in this section the results of a series of experiments. All models
are taken from the BEEM database. Some additional data on experience 3 and
4 may be found in [4].

Experiment 1. One may wonder how the algorithm used to estimate the num-
ber of duplicates works in practice. To this end, we first selected 204 instances (all

90 S. Evangelista

average

leader election.5

cambridge.7

reader writer.3

iprotocol.6

Height

b
f
s
-
d
d
d
d

ti
m

e
/

b
f
s
-
h
d
d
d

ti
m

e

7006005004003002001000

1.25

1

0.75

0.6
0.5

0.25

0

Fig. 7. Experiment 2: comparison of bfs-dddd and bfs-hddd

instances with at most 5,000,000 states) and compared their BFS level graphs
with the graphs forecasted during the search. We measured the error rate

err =

∑
i∈{1,...,n} abs

(∑li
j=li−1+1 |L (j)| − |L (j)|

)

∑
i |L (i)|

where l0 = −1 and l1, . . . , ln denote levels where detections were performed. The
principle of this rate is to observe for each slice [li + 1, li+1] of levels closed by a
duplicate detection the distance between the number of states estimated and the
number of states actually measured. If detections are performed on each level,
using bfs-hddd, we obtain an average error rate of 0.10 which basically means
that our method to evaluate duplicates is viable: it is possible to accurately eval-
uate a BFS level based on prior levels. With bfs-dddd the average goes up to
around 0.18 which is still rather good. Figure 6 presents some comparisons be-
tween the actual BFS level graph (plain curve) and the graph forecasted (dotted
curve) using bfs-dddd. We drew a vertical line for each level with a detection.
The graph of cambridge.4 has a regular bell shape and a large proportion of
backward transitions which leads to frequent detections. Our estimation is thus
excellent and we can estimate that detection frequency is almost optimal. On
the contrary, for firewire link.2, we often over-approximate levels. As a con-
sequence, detections are too largely spaced and too many states are revisited.
However, the opposite situation is much more frequent: we generally tend to
under-approximate levels (and forecast too much duplicates) and perform un-
necessary detections. Hence, our strategy is perhaps not aggressive enough.

Experiment 2. bfs-dddd was then compared to bfs-hddd. We selected all
the non trivial (with more than 500.000 states) instances of the database and
measured the execution times with both algorithms. We plotted the results in
figure 7. Each point corresponds to an instance. Data collected confirm our

Dynamic Delayed Duplicate Detection 91

Table 1. Experiment 3: comparison of bfs-dddd and part

Instance States part bfs-dddd bfs-dddd + partial DD
k=2 k=4 k=8

anderson 538 M 17 : 56 0.80 0.28 0.28 0.28
bakery 403 M 7 : 36 0.65 0.47 0.47 0.47
brp2 145 M 20 : 08 0.20 0.20 0.21 0.22

cambridge 255 M 32 : 28 0.62 0.44 0.28 0.30

collision 972 M 25 : 34 0.71 0.67 0.69 0.69

elevator 833 M 17 : 23 1.16 0.86 0.85 0.82
iprotocol 706 M 31 : 01 0.35 0.30 0.29 0.32

lann 421 M 23 : 28 0.47 0.47 0.49 0.52

leader filters 431 M 7 : 24 0.38 0.38 0.38 0.38
lup 379 M 8 : 21 1.03 0.29 0.31 0.32

peterson 142 M 3 : 20 0.76 0.71 0.73 0.77

rether 151 M 54 : 08 0.07 0.07 0.07 0.08

telephony 534 M 12 : 57 1.01 0.98 0.95 0.95
train-gate 478 M 26 : 34 0.24 0.24 0.25 0.31

0.60 0.45 0.45 0.46

initial expectations: bfs-dddd is especially interesting for long graphs, i.e.,
with a large height. This is however not the only parameter: the proportion
of backward transitions also plays an important role. For example, in the case
of cambridge.7, it is not so interesting to use bfs-dddd: even though its graph
is long, it has a high proportion of backward transitions (> 50%) which leads us
to perform many duplicate detections; whereas we observe good performances
for leader election.5 which has the opposite characteristics. Rates observed
go from 1.10 (reader writer.3) to 0.05 (iprotocol.6). The average is around
0.6. This does not look like an important improvement but, as we shall see it, the
major interest of our algorithm is that is scales much better than bfs-hddd to
large state spaces. Moreover the next experiment shows that partial detections
often allow to delete many duplicates at a low cost.

Experiment 3. We then compared our algorithm to part [1], based on a parti-
tioned hash table. This choice is mostly motivated by the fact that, according to
our experiments and the ones of Bao and Jones, it outperforms the algorithms of
[3] and [16] that can be considered, roughly speaking, as parents of bfs-dddd.

To compare these algorithms we tried to select a representative set of models
according to these parameters: average degree, width and height, proportion of
backward transitions, distribution of backward transition lengths. As we previ-
ously saw these may have a certain impact on the performance of our algorithm.

Table 1 presents the results of this experiment. For each instance we performed
one run with part and several runs with bfs-dddd, first without partial detec-
tion and then with partial detections with different values for parameter k (num-
ber of lengths considered). Each run was given the same amount of memory, that
is, the ability to keep at most 16·106 states in memory. This represents, in most

92 S. Evangelista

bfs-hddd

bfs-dddd

part

brp

4035302520151050

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

bfs-hddd

bfs-dddd

part

brp2

161412108642

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

0

bfs-hddd

bfs-dddd

part

cambridge

20181614121086420

7000

6000

5000

4000

3000

2000

1000

0

bfs-hddd

bfs-dddd

part

iprotocol

121086420

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

0

bfs-hddd

bfs-dddd

part

pgm protocol

161412108642

12000

10000

8000

6000

4000

2000

0

bfs-hddd

bfs-dddd

part

rether

1098765432

16000

14000

12000

10000

8000

6000

4000

2000

0

Fig. 8. Experiment 4: Comparison of part, bfs-hddd and bfs-dddd

cases, a small fraction of the state space. Execution times are expressed in the form
hours:minutes for part and as a fraction of this time for bfs-dddd. Best times
have been written in bold. The last row indicates average values.

We noticed that part is very sensitive to the graph structure: it is best suited
to wide and short graphs. In this case queues associated with partitions are
filled with many states meaning that few partition swaps will occur although
disk queues will be accessed more frequently. Therefore, we can basically make
the same observations as in the previous experiment: bfs-dddd is compara-
tively better on long graphs (e.g., brp2, iprotocol, rether), with preferably,
few backward transitions. Loading/unloading partitions is a major time consum-
ing operation of part for these kinds of graphs, especially if the state vector is
large, e.g., for rether. telephony is typically the worst input we can think of for
bfs-dddd. It is short and has 16 levels with more states than the cache can hold.

Dynamic Delayed Duplicate Detection 93

Since its average degree is high this leads to a huge amount of disk accesses in
temporary files. To a lesser extent, the same remark also applies to elevator.

Performing partial detections is especially interesting when backward tran-
sitions have very few typical lengths. anderson is a caricatural case as all its
backward transitions have the same length. Therefore partial detections helped
us to divide the execution time by almost three. This also applies to lup which
graph has two lengths that cover more than 90% of backward transitions. For
graphs that do not have typical lengths, e.g., train-gate or brp2, this optimiza-
tion does not bring any improvement. Hence, it should always be turned on: at
worst, we will not gain anything.

Experiment 4. The last experiments were done with 6 real life protocols:
brp, brp2 (timed version of brp), cambridge, iprotocol, pgm protocol and
rether. Our goal was to evaluate how part, bfs-hddd and bfs-dddd behave
as the graph gets larger and the height increases.

Figure 8 presents our results. We gave each algorithm the same amount of
memory and for bfs-dddd, we set parameter k to 4 as it gave us the best
results in previous experiment. For some fixed parameters we progressively in-
creased another parameter (on the x-axis, see [4] for details) and recorded the
search speed as nodes of the graph

search time (on the y-axis). We remark that part is more
efficient for small graphs although there is no huge difference. However, above
a certain point bfs-dddd becomes more interesting. In addition, even though
there generally is a moment where the speed decreases for all algorithms, this
instant occurs later for bfs-dddd. At last, many communication protocols have
in common that their BFS level graphs are terminated by a long series of very
small levels - that possibly correspond to the termination phase of the protocol.
This property also explains why bfs-dddd evolves better on such models.

6 Conclusion

This article proposed an adaptive duplicate detection scheme for external mem-
ory model checking that borrows several ideas from the literature: [10,13,16,2].
Its principle is to collect during the search some data that help us to determine
when detection should be performed or postponed. We evaluated this method on
several models of different families and complexities and find out that the new
algorithm is especially well suited to communication protocols with long graphs
and few backward transitions that are quite common in model checking.

Besides the extensions described in Section 4.5, we plan to refine the way
lengths are selected during partial duplicate detections. Our scheme assumes
that these lengths do not evolve during the search. This assumption is apparently
invalid in many cases where lengths are function of the level.

Acknowledgments. I thank Lars Michael Kristensen and Michael Westergaard
for their comments on earlier versions of this article.

94 S. Evangelista

References

1. Bao, T., Jones, M.: Time-efficient model checking with magnetic disk. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 526–540. Springer,
Heidelberg (2005)

2. Barnat, J., Brim, L., Simecek, P., Weber, M.: Revisiting resistance speeds up I/O-
efficient ltl model checking. In: Proc. of TACAS. LNCS, vol. 4963, pp. 48–62.
Springer, Heidelberg (2008)

3. Dill, D.L., Stern, U.: Using magnetic disk instead of main memory in the Murφ
verifier. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

4. Evangelista, S.: Dynamic delayed duplicate detection for external memory model
checking. Technical report, DAIMI, University of Aarhus, Denmark (2008),
http://daimi.au.dk/∼evangeli/doc/dddd.pdf

5. Hammer, M., Weber, M.: To store or not to store reloaded: Reclaiming memory on
demand. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, pp. 51–66. Springer, Heidelberg (2007)

6. Holzmann, G.J.: State compression in spin: Recursive indexing and compression
training runs. In: Proceedings of the Third Spin Workshop (1997)

7. Jabbar, S., Edelkamp, S.: I/O Efficient Directed Model Checking. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 313–329. Springer, Heidelberg (2005)

8. Jabbar, S., Edelkamp, S.: Parallel external directed model checking with linear
I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
237–251. Springer, Heidelberg (2005)

9. Korf, R.E.: Delayed duplicate detection: Extended abstract. In: Proc. of IJCAI,
pp. 1539–1541. Morgan Kaufmann, San Francisco (2003)

10. Korf, R.E.: Best-first frontier search with delayed duplicate detection. In: Proc. of
AAAI, pp. 650–657. AAAI Press/The MIT Press (2004)

11. Korf, R.E., Schultze, P.: Large-scale parallel breadth-first search. In: Proc. of AAAI,
pp. 1380–1385. AAAI Press/The MIT Press (2005)

12. Kristensen, L.M., Westergaard, M.: The ascoveco state space analysis platform. In:
Proc. of the 8th CPN workshop, DAIMI-PB, pp. 1–6 (2007)

13. Pelánek, R.: Typical structural properties of state spaces. In: Graf, S., Mounier, L.
(eds.) SPIN 2004. LNCS, vol. 2989, pp. 5–22. Springer, Heidelberg (2004)

14. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

15. Pelánek, R.: Model classifications and automated verification. In: Proc. of FMICS.
LNCS. Springer, Heidelberg (2007)

16. Della Penna, G., Intrigila, B., Tronci, E., Venturini Zilli, M.: Exploiting transition
locality in the disk based Murphi verifier. In: Aagaard, M.D., O’Leary, J.W. (eds.)
FMCAD 2002. LNCS, vol. 2517, pp. 202–219. Springer, Heidelberg (2002)

17. Tronci, E., Della Penna, G., Intrigila, B., Venturini Zilli, M.: Exploiting transition
locality in automatic verification. In: Margaria, T., Melham, T.F. (eds.) CHARME
2001. LNCS, vol. 2144, pp. 259–274. Springer, Heidelberg (2001)

18. Zhou, R., Hansen, E.A.: Structured duplicate detection in external-memory graph
search. In: Proc. of AAAI, pp. 683–689. AAAI Press/The MIT Press (2004)

19. Zhou, R., Hansen, E.A.: Domain-independent structured duplicate detection. In:
Proc. of AAAI. AAAI Press/The MIT Press (2006)

20. Zhou, R., Hansen, E.A.: Edge partitioning in external-memory graph search. In:
Proc. of IJCAI, pp. 2410–2417 (2007)

http://daimi.au.dk/~evangeli/doc/dddd.pdf

State Focusing: Lazy Abstraction for the Mu-Calculus�

Harald Fecher1 and Sharon Shoham2

1 Albert-Ludwigs-Universität Freiburg, Germany
fecher@informatik.uni-freiburg.de

2 The Technicon, Haifa, Israel
sharonsh@cs.technion.ac.il

Abstract. A key technique for the verification of programs is counterexample-
guided abstraction refinement (CEGAR). In a previous approach, we developed
a CEGAR-based algorithm for the modal μ-calculus, where refinement applies
only locally, i.e. lazy abstraction techniques are used. Unfortunately, our previous
algorithm was not completely lazy and had some further drawbacks, like a pos-
sible local state explosion. In this paper, we present an improved algorithm that
maintains all advantages of our previous algorithm but eliminates all its draw-
backs. The improvements were only possible by changing the philosophy of re-
finement from state splitting into the new philosophy of state focusing, where the
states that are about to be split are not removed.

1 Introduction

The modal μ-calculus [19] is an expressive modal logic that allows to express safety,
reachability, and mixtures of these properties, by using fixpoint constructions. The μ-
calculus is a sensible choice for branching time properties, which are relevant whenever
nondeterminism occurs from external factors (e.g. user input), from the modeling of
faulty systems/channels [9], or from the abstraction of time or arguments [7]. In partic-
ular, the μ-calculus can express most of the standard logics, like LTL and CTL. Hence,
the μ-calculus is an ideal basis for foundation-examinations.

For automatic verification of properties, the state explosion has to be tackled. One
of the most successful techniques to checking correctness of large or even infinite pro-
grams is predicate abstraction [12] with counterexample-guided abstraction refinement
(CEGAR) [5]. This approach consists of three phases: abstraction, model checking, and
refinement. Refinement is performed by adding a new predicate that splits the abstract
states. A prominent safety-checking tool based on CEGAR is BLAST [16], where re-
finement is applied locally (called lazy abstraction), i.e., only the abstract states of
a trace which comprises a spurious counterexample are refined. This avoids the state
space doubling obtained when the whole state space is split via a new predicate.

Adapting the idea of lazy abstraction to the μ-calculus is not straightforward. One
reason is that in order to preserve branching time properties, an abstract model needs
two kinds of transitions (called may, respectively must, transitions). Examples of such
models are (Kripke) modal transition systems [20,17]. They also allow to preserve both

� This work is financially supported by the DFG projects (FE 942/2-1) and (SFB/TR 14 AVACS).

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 95–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

96 H. Fecher and S. Shoham

validity and invalidity from the abstract model to the concrete model, at the cost of
introducing a third truth value unknown, which means that the truth value in the concrete
model is unknown. This leads to a 3-valued semantics. In this setting, refinement is no
longer needed when the result is invalid, as in traditional CEGAR approaches. Instead,
refinement is needed when the result is unknown. As such, the role of a counterexample
as guiding the refinement is taken by some cause of the indefinite result.

In [10], we have developed a preliminary algorithm for μ-calculus verification, hav-
ing the following advantages: (i) Refinement is made lazily. More precisely, some, but
not all, configurations (abstract states combined with subproperties) having the same
abstract state are split during a refinement phase: The state space remains smaller and
verification is sped up. (ii) The more expressive generalized Kripke modal transition
systems [24] are used as underlying abstract models (they have must hypertransitions,
i.e. transitions pointing to a set of states rather than to a singleton): A smoother re-
finement determination is obtained [24] and more properties (in principle, every least
fixpoint free μ-calculus formula) can be shown. (iii) Refinement determination is sep-
arated from the model checking: Refinement-heuristics can be defined independently.
(iv) Configurations and transitions that become irrelevant by newly obtained informa-
tion of (in)validity are removed: Complexity is reduced.

The algorithm of [10] still has the following disadvantages: (I) A set of configura-
tions rather than the single configuration determined by a refinement-heuristic is split:
Verification is unnecessarily slowed down, since often expensive splits that do not con-
tribute to the verification are made. (II) All may-/must-transitions that can arise as a
result of a split are calculated even if they are not needed: Avoidable, expensive satis-
fiability checks are made. (III) An exponential blowup can occur during a refinement
phase, since all hypertransitions obtained as the powerset of the may-transitions are
calculated. (IV) Some interesting information for defining refinement-heuristics is lost:
The split of accompanying configurations along with the one that is determined by
the refinement-heuristic obscures the intermediate results obtained after each split, and
might divert the refinement into undesired directions. These disadvantages cannot be
eliminated with existing techniques, with the exception of (III) that was addressed by
[24,25], yet their approaches rely on particular model checking algorithms.

Contribution. We develop the new technique of state focusing for refinement: the
states that are about to be split are not removed. Instead, the ‘old’ states are con-
nected to the ‘new’ states that result from their split via focus-transitions. This allows
to encode hypertransitions, but more importantly, it allows to perform a local refine-
ment, in which propagation of a split is deferred until it is called for by a refinement-
heuristic. We use this new technique to construct a new lazy, CEGAR-based algorithm
for the μ-calculus. Our algorithm uses a configuration structure (where the abstract
states are combined with subproperties) to encode the verification problem. In each iter-
ation, (in)valid configurations are determined, the structure is simplified accordingly, a
refinement-heuristic is used to determine a refinement step, and refinement is performed
locally by either splitting (focusing) one configuration, or propagating a previous split
to other configurations or components of the structure. Our new algorithm still has all
the advantages (i) – (iv) and additionally does not have the disadvantages (I) – (IV). In
particular, our algorithm combines the following properties:

State Focusing: Lazy Abstraction for the Mu-Calculus 97

– At most two configurations are added during a refinement step.
– No (in)validity is lost during a refinement or simplification calculation.
– Every satisfiability check is made on demand, i.e. unnecessary satisfiability checks

are avoided except if called for by the refinement-heuristic.
– The capability of verification with generalized Kripke modal transition systems as

the underlying abstract models is preserved while avoiding state explosion, since
only the hypertransitions obtained constructively via old configurations are present,
as in the non-lazy abstraction approach of [24].

– Improved simplifications of the underlying configuration structure are made by us-
ing a 9-valued logic, which is an extension of the 6-valued one used in [3].

– A separation of the refinement determination from the model checking is made,
allowing to define refinement-heuristics separately.

– Improved refinement-heuristics (compare with (IV)) are possible, since only ele-
mentary updates of the configurations structure are made during a refinement step.

– Other refinements (e.g., that of [10]) can be imitated at no further cost by gathering
together several local refinement steps.

Further related work. The state space doubling occurring after splitting the whole
state space via a predicate can also be tackled by the usage of BDDs, as in the tool
SLAM [4]. There the abstract transition relation is encoded as a BDD, avoiding the
explicit calculation of the exponentially large state space. Such a BDD approach is gen-
eralized from the safety properties checked by SLAM to μ-calculus properties in the
tool YASM [15]. There, the underlying abstract model is equivalent to a Kripke modal
transition system, which is less expressive than generalized Kripke modal transition
systems.

A CEGAR-approach to branching time properties is given in [23], where, contrary
to our approach, only the transition relation is under, resp., over approximated (the state
space remains unchanged). In [14,13], CEGAR-based algorithms for the μ-calculus are
presented having only Kripke modal transition systems as underlying abstract model.
Furthermore, there every configuration for which (in)validity is not yet shown is split,
i.e. only a weak form of lazy abstraction is made.

In [22] models are abstracted by alternating transition systems with focus predicates.
These resemble game-graphs with must-hypertransitions. Refinement is not discussed
in this paper. Must-hypertransitions were first introduced in disjunctive modal transition
systems [21]. A CEGAR-approach for the more general alternating μ-calculus is given
in [1], where must- as well as may-hypertransitions are used in the underlying abstract
model. Refinement is made globally (not locally) and the refinement determination de-
pends on the model checking algorithm, i.e. no separation is used. [2] increases ex-
pressiveness without using hypertransitions: Backward must-transitions and entry/exit
points are used to conclude the existence of transitive must-transitions.

In [11], cartesian abstraction, where ‘previous’ abstract states also remain existent, is
used for improving under approximations. However, there, the ‘old’ states are not used
to encode hypertransitions, and thus less expressive abstractions are obtained. More-
over, our technique also improves the over approximation by forbidding may-transitions
subsumed by may-transitions whose targets are more precise (less abstract).

98 H. Fecher and S. Shoham

2 Underlying Structures

Notations. Throughout, functional composition is denoted by ◦. Given a relation ρ ⊆
B×D with subsets X ⊆ B and Y ⊆ D we write X.ρ for {d ∈ D | ∃b ∈ X : (b, d) ∈ ρ}
and ρ.Y for {b ∈ B | ∃d ∈ Y : (b, d) ∈ ρ}. Let map(f, Φ) be the sequence obtained
from the sequence Φ by applying function f to all elements of Φ pointwise. f [b �→ d]
denotes the function that behaves as f except on b, which is mapped to d. Suppose D is
ordered, then� ⊆ (B → D)×(B → D) denotes the derived pointwise order between
functions in B → D. Furthermore, for f, f ′ : B → D expression f � f ′ denotes the
least function (if existent) that is above f and f ′ w.r.t. �.

System. Without loss of generality, we will not consider action labels on models in this
paper. A rooted transition system T = (S, si,→,L) consists of a (possibly infinite) set
S of states, an initial state si ∈ S, a transition relation → ⊆ S × S, and a predicate
languageL, which is a set of predicates that are interpreted over the states in S (i.e. each
predicate p ∈ L denotes a set [[p]] ⊆ S), such that there exists pi ∈ L with [[pi]] = {si}.
The boolean and exact predecessor closure ofL is denoted byL, where [[]] over boolean
operators is straightforwardly extended and [[pre(ψ)]] = → .[[ψ]] for ψ ∈ L.

Intermediate games. They are a generalization of the three-valued parity games of
[10,13] by using a third-kind of states (called intermediate game states) that are not
controlled by a unique player, but change the player depending on the type of the play
(validity vs. invalidity). The intermediate game states are used to model state-focusing:
The states to be split become intermediate game states. Intermediate games also use a
more complex validity image to improve refinement and simplification determinations:

Definition 1. An intermediate game G = (C0, C1, C 1
2
, Ci, R, R−, R+, θ, ω) has

– pairwise disjoint sets of game states for Player 0 (C0), for Player 1 (C1), and inter-
mediate game states C 1

2
; the union of all game states is denoted C = C0∪C 1

2
∪C1,

– a set of initial game states Ci ⊆ C,
– a set of normal transitions R ⊆ C × C,
– a set of must- and a set of may-transitions R−, R+ ⊆ (C0 ∪ C1)× C,
– a parity function θ : C → IN with finite image, and
– a validity function ω : C → {tt,ff,⊥}×{tt,ff,⊥}, where we write ω1, respectively ω2,

for applying the projection to the first, respectively second, component of ω.

The values of ω are explained in detail in Sec. 3. In general, ω1 is used to determine the
winner in the validity game, whereas ω2 is used in the invalidity game:

Definition 2. – Finite validity (resp. invalidity) plays for intermediate game G have
the rules and winning conditions as stated in Table 1. An infinite play Φ is a win
for Player 0 iff sup(map(θ, Φ)) is even; otherwise it is won by Player 1.

– G is valid (invalid) in c ∈ C iff Player 0 (resp. Player 1) has a strategy for the
corresponding validity (resp. invalidity) game such that Player 0 (resp. Player 1)
wins all validity (resp. invalidity) plays started at c with her strategy. G is valid
(invalid) iff G is valid (resp. invalid) in all games states of Ci.

State Focusing: Lazy Abstraction for the Mu-Calculus 99

Table 1. Moves of (in)validity game at game state c, specified through a case analysis. A player
also wins if its opponent has to move but cannot.

Moves of the validity game:
ω1(c) �= ⊥: Player 0 wins if ω1(c) = tt; otherwise Player 1 wins;
ω1(c) = ⊥ and c ∈ C0: Player 0 picks as next game state c′ ∈ {c}.(R ∪ R−);
ω1(c) = ⊥ and c ∈ C 1

2
∪ C1: Player 1 picks as next game state c′ ∈ {c}.(R ∪ R+);

Moves of the invalidity game:
ω2(c) �= ⊥: Player 1 wins if ω2(c) = ff; otherwise Player 0 wins;
ω2(c) = ⊥ and c ∈ C1: Player 1 picks as next game state c′ ∈ {c}.(R ∪ R−);
ω2(c) = ⊥ and c ∈ C0 ∪ C 1

2
: Player 0 picks as next game state c′ ∈ {c}.(R ∪ R+);

In the validity game, Player 0 has the role of the checker, and Player 1 has the role
of the refuter. In the invalidity game their roles switch. In both cases, must-transitions
are only used by the checker, whereas may-transitions are only used by the refuter. In
addition, the C 1

2
game states are always controlled by the refuter.

Remark 1. The validity, as well as the invalidity, game obviously correspond to a parity
game. Therefore, decidability of validity, resp. invalidity, is in UP ∩ coUP [18].

Property language. We use an automata representation of the μ-calculus [19]:

Definition 3 (Tree automata). An (alternating tree) automaton A = (Q, qi, δ, Θ) has

– a finite, nonempty set of states (q ∈)Q with the initial element qi ∈ Q
– a transition relation δ mapping automaton-states to one of the following forms,

where q, q1, q2 are automaton states and p ∈ L: p | ¬p | q1∧̃q2 | q1∨̃q2 | �q | �q
– an acceptance condition Θ : Q → IN with finite image.

An example of an automaton is depicted in Fig. 1 (α) on page 103, where all
automaton-states have acceptance value 0. In the following, QL = {q ∈ Q | δ(q) ∈ L},
Qqua = {q ∈ Q | δ(q) ∈

⋃
q′∈Q{�q′, �q′}} and Q0 = {q ∈ Q | δ(q) ∈

⋃
q1,q2∈Q{q1∨̃q2, �q1}} resp. Q1 = {q ∈ Q | δ(q) ∈

⋃
q1,q2∈Q{q1∧̃q2, �q1}} de-

notes those under control of Player 0 resp. Player 1. Satisfaction of a rooted transition
system w.r.t. an automaton is obtained via transformation into an intermediate game:

Definition 4. The property-game for T and A, denoted PT,A, is an intermediate game
(S × Q0, S × Q1, S × QL, {(si, qi)}, R, R−, R+, Θ ◦ πQ, ω), where πQ denotes the
projection to the second component and

R = {((s, q), (s, q′)) | ∃q′′ : δ(q) ∈ {q′∧̃q′′, q′′∧̃q′, q′∨̃q′′, q′′∨̃q′}}
R− = R+ = {((s, q), (s′, q′)) | δ(q) ∈ {�q′, �q′} ∧ (s, s′) ∈→}

ω(s, q) =

⎧
⎨

⎩

(tt, tt) if q ∈ QL, s ∈ [[δ(q)]]
(ff , ff) if q ∈ QL, s /∈ [[δ(q)]]
(⊥,⊥) otherwise

Furthermore, we write T |= A, whenever PT,A is valid, and otherwise, we write T �|= A
(which is equivalent to PT,A being invalid).

100 H. Fecher and S. Shoham

Note that our definition of T |= A coincides with the standard definition of satisfac-
tion, and T �|= A coincides with the satisfaction of the dual formula, i.e. corresponds
to negation. Next, special intermediate games derived for automata satisfaction on ab-
stracted systems are introduced. In the following, Z is used to describe subsets of the
system’s state space. More precisely, Z = {z : L → {+, ?,−} | ∞ > |z|} with

|z| = |{ψ ∈ L | z(ψ) �=?}|. The set {+, ?,−} is ordered by
?

+ −�� �� . The elements

of Z can be thought of as abstract states obtained through predicate abstraction, which
is made explicit as follows: The derived formula for z ∈ Z , which characterizes the
underlying system states, is ψz = ((

∧
ψ:z(ψ)=+ ψ) ∧ (

∧
ψ:z(ψ)=− ¬ψ)). We say that z

is finer than z′ if z � z′, i.e. ∀ψ ∈ L : z(ψ) ≥ z′(ψ), which ensures that [[ψz]] ⊆ [[ψz′]].

Definition 5. An abstract property-game P w.r.t. Q is (G, R−?, R+?, Zsat, Zunsat),
where

– G is an intermediate game such that C ⊆ Z × Q. We write πZ , respectively πQ,
for the projection from C to its first, respectively second, component.

– R−?, R+? ⊆ C × C are a set of possible must- and a set of possible not-may-
transitions such that R−? ∩R− = ∅ and R+? ⊆ R+.

– Zsat, Zunsat ⊆ Z are disjoint sets of abstract states indicating for which abstract
state satisfiability (resp. unsatisfiability) is ensured.

The set of all its transitions is Rall = R ∪R− ∪R−? ∪R+ ∪R+?.

The underlying states of an abstract property-game are also called configurations in
the sequel. In our algorithm, we are only interested in abstract property-games where
Q is the underlying state space of an automaton and where G obeys the following
additional notations and constraints, described only informally: Configurations whose
Q-component is in Q0 (Q1) belong in general to C0 (resp. C1), except that they can
also be intermediate game states (in C 1

2
). The parity function θ of G is given by Θ◦πQ,

where Θ is the automaton’s acceptance condition.
The normal transitions of G consist of two types; those leaving configurations from

C 1
2

are called focus-transitions and those leaving configurations from C0∪C1 and hav-

ing a property of type ∨̃ or ∧̃ are called junction-transitions. The corresponding con-
figurations are called junction configurations. Junction, as well as C 1

2
, configurations,

have at most two outgoing transitions. The must- and may-transitions leave C0 ∪ C1

configurations having type � or �, also called quantifier configurations.
Focus-transitions are used to partition an abstract state into several configurations:

Each of the targets of the outgoing focus-transitions of an abstract game state c ∈ C 1
2

describes a part of the set of concrete states described by c. The automaton compo-
nent does not change along focus-transitions. Junction-transitions imitate the automa-
ton transitions, but the abstract state of the source of a junction transition might be finer
than the abstract state of its target (as a result of refinement). Must and may transitions
change both the Q-component of the game state according to the automaton transi-
tion relation, and the abstract states according to the system. The must-transitions are
used to underapproximate the concrete transitions of T , whereas the may-transitions are
used as an overapproximation. Namely, a must-transition exists only if all the concrete

State Focusing: Lazy Abstraction for the Mu-Calculus 101

system states represented by the source game state have a corresponding transition to
some concrete state represented by the target game state. This is called the ∀∃ rule.
Every must-transition satisfies it, but possibly not all the transitions that satisfy it are
included. On the other hand, a may-transition exists (at least) if some concrete state
represented by the source state has a corresponding transition to some concrete state
represented by the target state. This is called the ∃∃ rule. Every transition that satisfies
it has to be included as a may-transition, but possibly more are contained.

Since the approximations given by the must and may transitions are not always pre-
cise, we use R−? to denote the transitions that are candidates to be added as must-
transitions, as they might satisfy the ∀∃ rule. Dually, R+? denotes transitions that are
candidates to be removed from the set of may-transitions, as they might not satisfy the
∃∃ rule. The initial abstract property-game is the following:

Definition 6. The initial abstract property-game P I
T,A for T and A is

((C0, C1, {z?} ×QL, {(z?, q
i)}, R, ∅, R+, Θ ◦ πQ, ω), R+, R+, {z?}, ∅), where

z?(ψ) =? for any ψ ∈ L
C0 = ({z?} ×Q0) ∪ {(z?[p �→ x], q) | (x = −, δ(q) = p) or (x = +, δ(q) = ¬p)}
C1 = ({z?} ×Q1) ∪ {(z?[p �→ x], q) | (x = +, δ(q) = p) or (x = −, δ(q) = ¬p)}
R = {((z?, q), (z?, q

′)) | ∃q′′ : δ(q) ∈ {q′∧̃q′′, q′′∧̃q′, q′∨̃q′′, q′′∨̃q′}} ∪
{((z?, q), (z?[p �→ x], q)) | δ(q) ∈ {p,¬p}, x ∈ {+,−}}

R+ = {((z?, q), (z?, q
′)) | δ(q) ∈ {�q′, �q′}}

ω(z, q) = (⊥,⊥) for (z, q) ∈ C0 ∪ C1 ∪ {z?} ×QL.

Note that the initial abstract property-game does not depend on T . It consists of a sin-
gle abstract state z?, which abstracts any concrete system-state. The may-transitions
overapproximate the concrete transitions by including a transition from z? to itself.
The underapproximation is empty. All the may-transitions are candidates to be added
as must-transitions, or alternatively be removed from the set of may-transitions. Here,
all the configurations whose property is in Q0 are C0-states, and all the configurations
whose property is in Q1 are C1-states, as in the concrete property-game. The C 1

2
config-

urations consist of the combination of z? with the predicate subproperties. Such a game
state is divided according to the predicate, via focus-transitions, into two configurations
having the same subproperty (predicate) but whose states are less abstract: one where
the predicate is added to z?, and another where its negation is added to z?. The game
state where the abstract state agrees with the predicate is a C1-state, meaning Player
0 wins in it (since it has no outgoing transition for Player 1 to use). The game state
that represents disagreement between the abstract state and the predicate is a C0-state,
meaning Player 1 wins in it. This makes the C 1

2
-state, which is controlled by Player 1

in the validity game and by Player 0 in the invalidity game, neither valid nor invalid,
indicating that the value of the predicate in z? is unknown. The set of configurations
for which satisfiability is ensured (Zsat) is initialized to {z?}, since system states exist,
and the set where unsatisfiability is ensured (Zunsat) is initialized as empty. The initial
abstract property-game for the property and system given in Fig. 1 is illustrated in Fig.
2 (a). There, the abstract state z? is denoted by ∅ since no predicate is set in it.

102 H. Fecher and S. Shoham

3 CEGAR Via Lazy Abstraction

Validity values. We start by explaining the 9 different validity-values. A configura-
tion with abstract state z and property q of an abstract property-game can only be valid
(resp. invalid) if all the underlying concrete states of z satisfy (resp. falsify) q. Thus, val-
idation in abstract property-games is no longer 2-valued, since it is possible that some
underlying concrete states satisfy the formula and some do not. This typically leads to
a 3-valued setting, where (z, q) can be neither valid nor invalid. In case unsatisfiable
abstract states are allowed, as in our case, it even leads to a 4-valued setting, where
(z, q) can be both valid and invalid (if z is unsatisfiable). We use further validity values
that help us define improved simplifications of the game structure. Namely, we distin-
guish between (in)validity and existential-(in)validity: (in)validity ensures that all the
underlying concrete states are (in)valid, possibly vacuously. Existential-(in)validity en-
sures that there exists an underlying (in)valid concrete state. Existential-invalidity thus
ensures that the configuration is not valid, and dually for existential-validity. These pos-
sibilities are recorded by ω1 w.r.t. validity and by ω2 w.r.t. invalidity. Namely, we use
ω1 to determine if the configuration is valid (tt), existential-invalid (ff) – meaning it is
not valid, or its validity is unknown (⊥). Dually for ω2.

More precisely, (tt,⊥) stands for valid, (⊥,tt) stands for existential-valid, and (tt,tt)

stands for valid-and-satisfiable. Similarly, (⊥,ff) stands for invalid, (ff,ff) stands for
invalid-and-satisfiable, and (ff,⊥) stands for existential-invalid. Value (tt,ff) stands for
unsatisfiable, (ff,tt) stands for existential-mixed, and (⊥,⊥) stands for unknown.

Example. We illustrate how our algorithm works on a toy example. We describe the
underlying abstract property-game, the underlying model checking algorithm, the sim-
plifications of the underlying game structure, and the possible refinement steps (which
depend on a heuristic). The algorithm is illustrated by checking the μ-calculus formula
presented via an automaton in Fig. 1 (α) at the system depicted in Fig. 1 (β).

Fig. 2 (a) presents the initial abstract property-game, defined in Def. 6 and explained
thereafter. The unknown existence of may and must transitions is indicated by the sym-
bol ? on the transitions. The focusing of predicates configurations can be viewed as
a degenerate split that takes place in the initial abstract property-game. (In)validity is
determined via a parity game algorithm. The configurations where Player 0 has a win-
ning strategy in the validity game are labeled as valid (tt,⊥), whereas the ones where
Player 1 has a winning strategy in the invalidity game are labeled as invalid (⊥,ff),
as shown in Fig. 2 (b). No further validity-label improvements and redundant transi-
tions/configurations removals are possible in Fig. 2 (b).

Since the initial configuration in Fig. 2 (b) is undetermined, refinement is needed.
Thus, a heuristic, determining how to refine the abstraction, is applied. The different
possibilities are illustrated by the remainder of the example. Assume that the heuristic
determines that the initial configuration, denoted c, needs to be split according to the
least precondition of true (the characterizing formula of the abstract state ∅), denoted
p̃ ≡ pre(true). Then the structure Fig. 2 (c) is obtained, where two initial configura-
tions that correspond to the division of c by p̃ are added, c becomes an intermediate
(C 1

2
) configuration, corresponding focus-transitions are added from c to the new con-

figurations, and the outgoing transitions of c are redirected to the new configurations

State Focusing: Lazy Abstraction for the Mu-Calculus 103

α) � ∧̃ x ≤ 4�� �� ��
��

q0 q1 q2
β) �������	

x:=0 ��

x:=x+2

��
[x≥6] x:=0

��

[x≥3] x:=x−1

��

Fig. 1. A μ-calculus formula (α) in terms of automata (see Def. 3), and a system (β). The prop-
erty of (α) holds if there is an infinite path possible such that always x ≤ 4 holds. It corresponds
to the CTL formula EG(x ≤ 4). In (β), the range of x is IN, initialized with 0. The actions of
the transitions can be executed whenever the guard, depicted in rectangular brackets, is valid.

∅
�

∅
∧

������∅
p

¬p
p

p
p

�� ��
? ���� ��

?
��

		

a)

Zsat={∅}
Zunsat=∅

∅
�

∅
∧

������∅
p

¬p
p

p
p

�� ��
? ���� ��

?
��

		

 (tt,⊥)

(⊥,ff)

b)

Zsat={∅}
Zunsat=∅

������∅
�

¬p̃
�

p̃
�

∅
∧

������∅
p

¬p
p

p
p

��

��

��

?

���
�

��
?

��

���
�

���������

		

		

 (tt,⊥)

(⊥,ff)

c)

Zsat={∅}
Zunsat=∅

������∅
�

¬p̃
�

p̃
�

∅
∧

������∅
p

¬p
p

p
p

��

��

��

?

���
�

��
?

��

���
�

���������

		

		

(⊥,ff)

(tt,⊥)

(⊥,ff)

d)

Zsat={∅} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

∅
∧

������∅
p

¬p
p

p
p

��

��

?

���
�

��

?
��

���
��

���������

		

		

(⊥,ff)

(tt,⊥)

(⊥,ff)

e)

Zsat={∅,p̃} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

������∅
∧

¬p
∧

p
∧

������∅
p

¬p
p

p
p

��

��
��

�

�������?

���
�

��

��

?
��

���
��

��������

		

		

		

(⊥,ff)

(tt,⊥)

(⊥,ff)

f)

Zsat={∅,p̃} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

������∅
∧

¬p
∧

p
∧

¬p
p

p
p

��

��
��

�

�������?

���
�

��

��

?
��

���
��

��������

		

		

(⊥,ff)(⊥,ff)

(tt,⊥)

(⊥,ff)

g)

Zsat={∅,p̃} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

������∅
∧

¬p
∧

p
∧

¬p
p

p
p

��

�����
���

�

��							

? ����? ��
?

��

?

��

��

��

?
		

��			
		

���������

		

		

(⊥,ff)(⊥,ff)

(tt,⊥)

(⊥,ff)

h)

Zsat={∅,p̃} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

������∅
∧

¬p
∧

p
∧

¬p
p

p
p

��

������
��

�

��							

? ����? ��
?

��

��

��

?
		

��			
		

���������

		

		

(⊥,ff)(⊥,ff)

(tt,⊥)

(⊥,ff)

i)

Zsat={∅,p̃} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

������∅
∧

¬p
∧

p
∧

¬p
p

p
p

��

������
��

�

��							

? ����? ��
?

��

��

��

?
		

��			
		

���������

		

		

(⊥,ff) (ff,ff)

(ff,⊥)

(tt,⊥)

(ff,ff)

j)

Zsat={∅,p̃,¬p} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

p
∧

p
p

��

��							

? ����? �� ��

		

(⊥,ff)

(tt,⊥)

k)

Zsat={∅,p̃,¬p} Zunsat=∅

������∅
�

¬p̃
�

p̃
�

p
∧

p
p

��

��							

? ����? �� ��

		

(tt,ff)

(tt,⊥)

l)

Zsat={∅,p̃,¬p} Zunsat={¬p̃}

������∅
�

p̃
�

p
∧

p
p

��

��							

? ����? �� ��

 (tt,⊥)

m)

Zsat={∅,p̃,¬p} Zunsat={¬p̃}

������∅
�

p̃
�

p
∧

p
p

��

��							

? ���� �� ��

 (tt,⊥)

n)

Zsat={∅,p̃,¬p} Zunsat={¬p̃}

������∅
�

p̃
�

p
∧

p
p

��

��							

? ���� �� ��

 (tt,⊥)

(tt,tt)

(tt,tt) (tt,⊥)

o)

Zsat={∅,p̃,¬p} Zunsat={¬p̃}

Fig. 2. Example of a property check via lazy abstraction. Here, p ≡ x ≤ 4 and p̃ ≡ pre(true).
May-transitions are depicted as dashed arrows and must-, as well as focus- and junction-, transi-
tions as solid arrows. May-/must-transition whose existence is unknown contain symbol ?. Inter-
mediate configurations are depicted as circles and the others are depicted as rectangles.

104 H. Fecher and S. Shoham

(by doubling them). Note that only c is split. Here we already determine the existence
of the must-transition from (p̃, �) to (∅,∧) since p̃ represents the least precondition
of ∅, thus the ∀∃ condition necessarily holds. By analogous arguments, we determine
the absence of the may-transition from (¬p̃, �) to (∅,∧) (this detection mechanism is
not yet included in the algorithm in order to increase readability). The validity check
determines the upper left configuration to be invalid, yielding Fig. 2 (d).

Next, assume that the heuristic determines that the lower left configuration needs
to be checked to determine if it contains the initial concrete state (since two initial
configurations currently exist as a result of the previous split). This is indeed the case
here. Therefore, the set of initial configurations becomes this singleton set. Moreover,
the satisfiability of the corresponding abstract state p̃ is implied, thus Zsat is extended.
Fig. 2 (e) is obtained.

Now, assume the heuristic determines that the “degenerate” split of the intermediate
configuration (∅, p) needs to be propagated backwards along the junction-transition t
that points to it. Then the source (∅,∧) of t, denoted sor(t), is divided into two new
configurations via the predicate p that determined the split of (∅, p). This is done by
dividing sor(t) according to the targets of the focus-transitions that leave (∅, p) (these
are the configurations to which (∅, p) was split). As a result, sor(t) becomes an interme-
diate configuration, corresponding focus-transitions are added from sor(t) to the new
configurations, t is redirected (by doubling it) such that each of its copies connects one
of the new configurations directly to the corresponding target of the focus-transitions
leaving (∅, p) that agrees with it on the splitting predicate p (instead of connecting it to
(∅, p)), and other transitions leaving sor(t) are redirected (by doubling them) such that
their sources become the new configurations. As a result, the original target (∅, p) of
t becomes unreachable. Thus Fig. 2 (f) is obtained and after (in)validity determination
and removal of the unreachable configuration, Fig. 2 (g) is obtained.

Assume the heuristic yields the (unique) may-transition t that points to the interme-
diate configuration (∅,∧) in order to redirect it to the configurations that resulted from
the previous split of (∅,∧). Then t is replaced by may-transitions (for which existence is
not ensured) pointing to the targets of the focus-transitions leaving (∅,∧). Also, possi-
ble must-transitions are added to those configurations, but previous must-transitions (to
the intermediate configuration (∅,∧)) are not removed. These previous must-transitions
can be considered as hypertransitions. Thus Fig. 2 (h) is obtained and after the removal
of irrelevant transitions Fig. 2 (i) is obtained. There, the (not ensured) may transition
from (p̃, �) to (¬p,∧) is removed. This is because the source configuration is controlled
by Player 0 and may transitions are used by Player 0 in the invalidity game. However,
since the target of the transition is labeled by (⊥,ff), Player 0 will not use this transition
in a winning strategy in the invalidity game, since it will make him lose (by reaching a
configuration whose ω2-value is ff). Thus, removing it does not change the outcome.

Assume the heuristic determines that satisfiability of the abstract state encoded by
¬p needs to be checked. The state is satisfiable and therefore Zsat is extended. Fur-
thermore, the validity-value of the two configurations having this abstract state and that
are invalid (⊥,ff) is modified to (ff,ff), indicating that, beside the fact that all underly-
ing concrete states are invalid, there also exists an invalid underlying concrete state.
Using this information, the intermediate configuration (∅,∧) pointing to one of those

State Focusing: Lazy Abstraction for the Mu-Calculus 105

configurations via a focus-transition is labeled with a value (ff,⊥) (existential-invalid)
indicating that there is an underlying concrete state which is invalid. This is justified by
the fact that the intermediate configuration has the same subproperty as the targets of
its outgoing focus-transitions and its abstract state represents a superset of their abstract
states. Thus Fig. 2 (j) is obtained and after the removal of irrelevant transitions and un-
reachable configurations Fig. 2 (k) is obtained. Namely, first both of the (possible-)must
transitions pointing to the intermediate configuration (∅,∧) are removed. This is be-
cause the sources of these transitions are controlled by Player 0 and must transitions
are used by Player 0 in the validity game, but the ω1-value of the target (∅,∧) of the
transitions is ff , which makes Player 0 lose. Therefore, Player 0 will not use these tran-
sitions in a winning strategy in the validity game, and removing them does not change
the outcome. Similar arguments are responsible for the removal of the possible-must
transition pointing to (¬p,∧). The removal of these transitions makes (∅,∧), (¬p,∧)
and (¬p, p) unreachable and they are removed with their transitions.

Assume the heuristic yields the abstract state encoded by p̃ for which satisfiability
needs to be checked. The state is unsatisfiable and therefore Zunsat is extended. Further-
more, the upper left configuration having this abstract state is labeled as unsatisfiable
(tt,ff). Thus Fig. 2 (l) is obtained and after the removal of irrelevant transitions and un-
reachable configurations Fig. 2 (m) is obtained. Namely, the focus-transition pointing to
the unsatisfiable configuration is removed (along with the unsatisfiable configuration),
since it will never be used as a part of a winning strategy: in the validity game its source
is controlled by Player 1, yet, the ω1-value of its target is tt, making Player 1 lose.
Analogously, in the invalidity game it makes Player 0 who controls it lose, since the
ω2-value of its target is ff .

Finally, assume the heuristic yields the (unique) possible-must-transition from (p̃, �)
to (p,∧), for which existence needs to be checked. After checking the ∀∃ condition by
an unsatisfiability check of p̃ ∧ ¬pre(p), the must transition is added to the structure.
Thus Fig. 2 (n) is obtained. The parity-game algorithm determines all the configurations
as valid, after which the validity function is adapted to (tt,tt) in the configurations where
the states are known to be satisfiable. This yields Fig. 2 (o), where the calculation ter-
minates, since the property is verified: the single initial configuration is valid (the first
component of its validity-value is tt).

Base algorithm. Table 2 presents the verification algorithm PropertyCheck and its
used procedure Validity, which

determines the (in)valid configurations of a given abstract property-game and
adapts the validity function as best as possible. In Line 1, Zunsat is used to determine
unsatisfiable states. In Line 2 the validity algorithm is applied and the determined
validity is stored in the first component of ω. In Line 3, valid configurations become
valid-and-satisfiable if the underlying abstract state is known to be satisfiable, i.e. is
in Zsat. In Line 4, a configuration c that points via a chain of focus-transitions to a
configuration for which the existence of a concrete state satisfying the corresponding
property is known, i.e. where ω2 is tt, is also updated to have value tt for ω2. This
is because the concrete states described by c are a superset of those described by the
targets of its outgoing focus-transitions. Lines 5-7 make the analogous adaptations

106 H. Fecher and S. Shoham

Table 2. A model checking algorithm PropertyCheck for the μ-calculus. Its used procedure for
validity determination Validity is presented here and the procedure for the refinement calculation
is given in Table 3. Here, P = ((C0, C1, C 1

2
, Ci, R, R−, R+, θ, ω), R−?, R+?, Zsat, Zunsat).

Algorithm. PropertyCheck (A : automaton, T : rooted transition system)
Local variables P : an abstract property-game, initialized with P I

T,A

1: Validity (P)

2: while (∃ci ∈ Ci : ω1(c
i) �= tt) ∧ (∃ci ∈ Ci : ω2(c

i) �= ff) do

3: Remove all transitions in Rall leaving a configuration c with ω(c) ∈ {(tt,tt),(ff,ff),(tt,ff)}.

4: If c ∈ C0 ∧ (ω1(c) = ⊥ ⇒ ω1(c
′) = ff) ∧ (ω2(c) = ⊥ ⇒ ω2(c

′) = ff) or
c ∈ C1 ∧ (ω1(c) = ⊥ ⇒ ω1(c

′) = tt) ∧ (ω2(c) = ⊥ ⇒ ω2(c
′) = tt) or

c ∈ C 1
2

∧ ω(c′) = (tt, ff) then Remove (c, c′) from R.

5: If c ∈ C0 ∧ (ω2(c) = ⊥ ⇒ ω2(c
′) = ff) or c ∈ C1 ∧ (ω1(c) = ⊥ ⇒ ω1(c

′) = tt)
then Remove (c, c′) from R+ ∪ R+?.

6: If c ∈ C0 ∧ (ω1(c) = ⊥ ⇒ ω1(c
′) = ff) or c ∈ C1 ∧ (ω2(c) = ⊥ ⇒ ω2(c

′) = tt)
then Remove (c, c′) from R− ∪ R−?.

7: Remove from P all the configurations which are unreachable from the initial configura-
tions via Rall.

8: Refine (P)

9: Validity (P)

10:if ∀ci ∈ Ci : ω1(c
i) = tt then return(tt) else return(ff)

Algorithm. Validity (P : an abstract property-game)

1: Set ω to (tt, ff) on every configuration c ∈ C where πZ(c) ∈ Zunsat.

2: Determine the valid configurations via a parity-game algorithm and set ω1 to tt on those.

3: Set ω2(c) to tt on every configuration c ∈ C where ω1(c) = tt and πZ(c) ∈ Zsat.

4: Set ω2 to tt on every configuration from C 1
2

that points to a configuration where ω2 is tt.

5: Determine the invalid configurations via a parity-game algorithm and set ω2 to ff on those.

6: Set ω1(c) to ff on every configuration c ∈ C where ω2(c) = ff and πZ(c) ∈ Zsat .

7: Set ω1 to ff on every configuration from C 1
2

that points to a configuration where ω1 is ff .

concerning invalidity determination. As a result of Lines 4 and 7, C 1
2

-configurations
may get the “pure existential” values (⊥,tt),(ff,⊥),(ff,tt), which are later used to simplify
the game. No other configurations can get these values.

PropertyCheck starts by constructing the initial abstract property-game obtained
from a given automaton. Then it repeatedly applies Validity, makes some simplifica-
tions (explained below), and calculates a refinement step until the property is verified
or falsified, which is the case if the initial configurations are either all valid or all in-
valid. Redundant transitions (and configurations) are removed as follows. In Line 3, the
outgoing transitions of configurations whose validity value is from {(tt,tt),(ff,ff),(tt,ff)}
are removed. This is reasonable, since any play in one of the games will end at such
configurations. The same argument holds for value (ff,tt) that might be given to a C 1

2
configuration, but here (in)validity is not completely resolved, and therefore the out-
going transitions are not removed, since they might be necessary during refinement.

State Focusing: Lazy Abstraction for the Mu-Calculus 107

Transitions that will never be chosen in a winning strategy are removed as follows. In
Line 4 junction-transitions leaving ∨̃-configurations c, i.e. c ∈ C0, are removed when-
ever each not yet determined component of ω(c) is ff in the target of the transition.
This is justified since Player 0 would lose (in both games) by using such transitions.
Analogously for c ∈ C1. Focus-transitions to unsatisfiable configurations are also re-
moved since they are losing for their controlling player (in both games). In Line 5 (resp.
Line 6) may-(resp. must-)transitions are removed in similar conditions as for junction-
transitions except it is sufficient to consider only one component of ω(c), since may-
(resp. must-)transitions can only be used by Player 0 in the invalidity game or Player
1 in the validity game (resp. Player 0 in the validity game or Player 1 in the invalidity
game). Finally, all unreachable configurations are removed in Line 7.

Refinement algorithm. The pseudo code of the refinement algorithm is presented in
Table 3. There, a heuristic is used to determine the refinement. The heuristic may de-
pend on further arguments other than the abstract property-game, like the system to
be checked or the history of refinement. It can also be probabilistic. We describe each
possible refinement-scenario along with the way it is handled algorithmically.

The first two scenarios of the refinement correspond to the local split, better focusing,
of a quantifier-, resp. junction-, configuration (Line 1, resp. Line 7). A split always orig-
inates either in a configuration whose subproperty is a predicate (such configurations
are split in the initial abstract property-game already) or in a quantifier-configuration.
It later might be propagated to junction-configurations. A local split is performed by
turning the configuration into a C 1

2
configuration, which serves as an auxiliary config-

uration, and introducing new subconfigurations. Newly introduced configurations map
via ω to (⊥,⊥) and via θ as Θ ◦ πQ. Thus, during refinement, C0 or C1 configura-
tions can become C 1

2
configurations. However, a C0 configuration will never become

a C1 configuration and vice versa. Similarly, C 1
2

-configurations never become C0 or
C1 configurations. In addition, the initial configurations always remain C0 ∪ C1 con-
figurations. Furthermore, as a result of the local splitting, the configurations used in the
abstract property-game might overlap. However, we have the property that when con-
sidering only C0 ∪ C1 configurations having the same property (i.e. the same second
component), then their abstract states have disjoint underlying sets of concrete states.
The different calculations for the two splitting scenarios are described in more detail
below, followed by the other scenarios of the refinement, which are aimed at updating
the components of the abstract property-game and making them more precise (e.g. after
a split took place). Note that in previous papers the propagation of a split to junction-
configurations, as well as the updates of the other components, were all performed
together in each refinement step.

Splitting quantifier-configurations (Line 1). A quantifier-configuration c = (z, q) ∈
C0 ∪ C1 whose validity is unknown, i.e. ω(c) = (⊥,⊥), is determined together with
a predicate ψ ∈ L performing the split. The predicate is unused in z, i.e. z(ψ) =
? (otherwise no improvement takes place). Two new configurations where z is set to
positive, resp. negative, at ψ are added to the configurations of the corresponding player,
and c becomes a C 1

2
configuration that points via focus-transitions to the newly added

configurations (Line 2). The transitions outgoing c are redirected (and doubled) such
that they leave the two new configurations (Line 5). The redirected must-transitions

108 H. Fecher and S. Shoham

Table 3. Here, P = ((C0, C1, C 1
2
, Ci, R, R−, R+, θ, ω), R−?, R+?, Zsat, Zunsat). Newly in-

troduced configurations map via ω to (⊥,⊥) and via θ as Θ ◦ πQ. Satisfiable(ψ) denotes a
satisfiability check of ψ (checks if [[ψ]] �= ∅) made by a theorem prover, and similarly for
Unsatisfiable(ψ). For (cs, ct) ∈ Rall let R

↑(cs,ct)
ta = {(cs, c

′
t) ∈ Rall | ct ∈ {c′

t}.R∗
1
2
} and

R
↓(cs,ct)
ta = {(cs, c

′
t) ∈ Rall | c′

t ∈ {ct}.R∗
1
2
}, where R∗

1
2

is the transitive closure of the focus

transitions R ∩ (C 1
2

× C).

Algorithm. Refine (P: a property-game)

A heuristic determines one of the following cases including the determination of the corre-
sponding configuration, transition, etc.:

1: [determine ((z, q), ψ) ∈ (C0 ∪ C1) × L with q ∈ Qqua ∧ z(ψ) =? ∧ ω(z, q) = (⊥,⊥)]:

% Here, c = (z, q) and C′ = {({z[ψ �→ +]}, q), ({z[ψ �→ −]}, q)} and j ∈ {1, 2} with q ∈ Qj .

2: Cj := (Cj \ {c}) ∪ C′ and C 1
2

:= C 1
2

∪ {c} and R := R ∪ ({c} × C′)

3: R+? := {(c′, c′′) | c′ ∈ C′ ∧ (c, c′′) ∈ R+} ∪ R+? \ ({c} × C)

4: R−? := {(c′, c′′) | c′ ∈ C′ ∧ (c, c′′) ∈ R+ \ R−} ∪ R−? \ ({c} × C)

5: Ru := {(c′, c′′) | c′ ∈ C′ ∧ (c, c′′) ∈ Ru} ∪ Ru \ ({c} × C) with u ∈ {+, −}
6: if c ∈ Ci then Ci := C′ ∪ Ci \ {c}
7: [determine (c, c′) ∈ R∩((C0∪C1)×C 1

2
) with ω(c) = (⊥,⊥)∧ω(c′) /∈ {(tt,tt),(ff,ff),(tt,ff)}]:

% Here, c = (z, q) and c′ = (z′, q′) and C′′ = {(z̃, q) | ∃(z̃′, q′) ∈ {c′}.R ∧ z̃ = (z̃′ � z)}.

8: R := R \ {(c, c′)} ∪ {((z̃, q), (z̃′, q′)) | (z̃′, q′) ∈ {c′}.R ∧ z̃ = (z̃′ � z)}
9: if c /∈ C′′ then % otherwise C′′ = {c}
10: Cj := (Cj \ {c}) ∪ C′′ and C 1

2
:= C 1

2
∪ {c} % Here, j ∈ {0, 1} with q ∈ Qj .

11: R := ({c} × C′′) ∪ {(c′′, c̃) | c′′ ∈ C′′ ∧ (c, c̃) ∈ R} ∪ (R \ ({c} × C))

12: if c ∈ Ci then Ci := C′′ ∪ Ci \ {c}
13:[determine (c, c′) ∈ R+ with c′ ∈ C 1

2
∧ ω(c′) /∈ {(tt,tt),(ff,ff),(tt,ff)}]:

% Here R′ = {c} × ({c′}.R)

14: R−? := R−? ∪ R′ and Ru := (Ru \ {(c, c′)}) ∪ R′ with u ∈ {+, +?}
15:[determine (c, c′) = ((z, q), (z′, q′)) ∈ R+?]: if Unsatisfiable(ψz ∧ pre(ψz′))

16: then Ru := Ru \ {(c, c′)} with u ∈ {+, +?}
17: else R+? := R+? \ {(c, c′)}
18:[determine (c, c′) = ((z, q), (z′, q′)) ∈ R−?]: if Unsatisfiable(ψz ∧ ¬pre(ψz′))

19: then R− := (R− \ R
↑(c,c′)
ta) ∪ {(c, c′)} and R−? := R−? \ R

↑(c,c′)
ta

20: else R−? := R−? \ R
↓(c,c′)
ta

21:[determine (z, q) ∈ Ci]: if Satisfiable(pi ∧ ψz)

22: then Ci := {(z, q)} and Zsat := Zsat ∪ {z}
23:[determine z ∈ Z]: if Satisfiable(ψz)

24: then Zsat := Zsat ∪ {z}
25: else (if Unsatisfiable(ψz) then Zunsat := Zunsat ∪ {z})

State Focusing: Lazy Abstraction for the Mu-Calculus 109

remain ensured. The redirected may-transitions, on the other hand, might be overly
approximated due to the specialization of the source. Thus, they are added as possible
not-may-transitions (Line 3). Furthermore, the may-transitions which are not subsumed
by ensured must-transitions are also added as possible must-transitions (Line 4), since
the specialization of the source can cause them to fulfill the ∀∃ rule. Finally, if c is
an initial configuration, it is replaced by the new ones (Line 6). In Fig. 2, ‘splitting
quantifier-configuration’ is performed from (b) into (c).

Splitting junction-configurations (Line 7). Here, the purpose is to propagate a previous
split to the anteceding junction-configurations of the split configuration. Therefore, a
transition (c, c′) from a junction-configuration whose validity is unknown, i.e. ω(c) =
(⊥,⊥), to a C 1

2
-configuration is determined, i.e. (c, c′) ∈ R ∩ ((C0 ∪ C1) × C 1

2
). The

idea is to split c via the two configurations reachable from c′ by focus-transitions, which
are the configurations to which c′ was split earlier. Thus, c′ is determined such that
its validity is not from {(tt,tt),(ff,ff),(tt,ff)}, since otherwise either all the underlying
concrete states of c′ are in agreement or none exist, and in both cases no improvement
will result from splitting c according to the split of c′.

Then c is (possibly) split as follows. For each of the two configurations c̃′, reachable
via a focus-transition from c′, we consider in C′′ a configuration that corresponds to
the least upper bound z � z̃′ of the abstract state of c and the abstract state of c̃′, if
it exists. The concrete states encoded by z � z̃′ correspond to the intersection of the
underlying concrete states of z and z̃′. Note that while z̃′ is finer than the abstract state
z′ of c′, it is not guaranteed that z̃′ is finer than z, since z could become finer than z′

by previous splits based on other outgoing junction-transitions of c. In particular, z and
z̃′ might give contradictory values (+ vs.−) to some predicate (meaning they represent
disjoint sets of concrete states), in which case z� z̃′ does not exist. Still, at least for one
focus-transition target such an upper bound exists, since by an invariant z is finer than
z′. Moreover, exactly one additional predicate ψ ∈ L is set (either to + or to −) in z̃′

compared to z′ (along the focus-transition). ψ is the predicate that c′ was split by. This
means that z is finer than z̃′ w.r.t. all predicates, except for possibly ψ. Now, if ψ is not
set in z, then ψ does not introduce contradictions as well, thus (1) upper bounds exist
for both of the focus-transitions targets. Otherwise (ψ is already set in z as a result of a
previous split), then (2) the least upper bound exists (only) for the one focus-transition
target in which ψ is set the same as in z.

In case (2), the only existing least upper bound is equal to z, since in this case z is
already finer than z̃′ (z̃′ � z), i.e., it was already split by ψ (and therefore the abstract
state of the other focus-transition target is disjoint from z). Thus, C′′ = {c}. In this case,
c is not split but the transition (c, c′) is redirected to point directly to the configuration
c̃′ for which z̃′ � z (Line 8).

In case (1), the least upper bounds are z[ψ �→ +] and z[ψ �→ −], each of which
represents the intersection of the underlying states of z with the states satisfying ψ
or ¬ψ, resp., meaning z is split by ψ. In this case, identified by the condition c �∈
C′′ in Line 9, c is split into the two new configurations collected in C′′. These are
added to the configurations of the corresponding player (Line 10) and c becomes a C 1

2
configuration (Line 10) pointing via focus-transitions to the new configurations (Line
11). Furthermore, the outgoing transitions of c are redirected to the new configurations

110 H. Fecher and S. Shoham

as follows. First, instead of the transition (c, c′), each of the new configurations points
directly to the focus-transition target c̃′ that “created” it, i.e., whose least upper bound
(intersection) w.r.t. z it represents (Line 8). Additionally, the outgoing transitions of c
pointing to a target different than c′ are redirected (by doubling them) to leave the new
configurations (Line 11 combined with Line 8). Finally, if c is an initial configuration,
it is replaced by the new ones (Line 12). In Fig. 2, ‘splitting junction-configuration’
(based on case (1)) takes place from (e) into (f).

Focusing may-transitions (Line 13). Here, the purpose is to propagate a previous split
to the incoming may-transitions of the split configuration. Therefore, a may-transition
(c, c′) ∈ R+ with c′ ∈ C 1

2
is determined. Such a transition models a hypertransition.

It is redirected (by doubling it) such that it points directly to the focus-transition targets
of c′, i.e. to the configurations to which c′ was ‘split’ earlier. The determined transition
is such that ω(c′) /∈ {(tt,tt),(ff,ff),(tt,ff)}, ensuring that these focus-transition targets
were not removed during simplification. The new may-transitions also become possible
not-may-transitions, since they might be overly approximated. Furthermore, they are
also added as possible must-transitions. Note that unlike the removal of may-transitions
pointing to c′, (possible) must-transitions that point to c′ (if exist) remain intact, since
hypertransitions are needed in the case of must transitions to increase expressiveness.
In Fig. 2, ‘focusing may-transition’ is performed from (g) into (h).

Ascertaining may-transitions (Line 15). A possible not-may-transition ((z, q), (z′,
q′)) ∈ R+? is determined and it is checked if it is overly approximated. This is done
by a theorem prover call of Unsatisfiable(ψz ∧ pre(ψz′)). If this call is successful,
meaning the ∃∃ condition does not hold w.r.t. ψz and ψz′ , the transition is removed as a
may-transition. Otherwise, it is only removed from R+?. Note that here and in the next
scenario an unsatisfiability call is made instead of a satisfiability call in order to remain
sound if incomplete satisfiability checks are applied.

Ascertaining must-transitions (Line 18). A possible must-transition ((z, q), (z′, q′)) ∈
R−? is determined and it is checked if it is a real must transition. This is done by a
theorem prover call of Unsatisfiable(ψz∧¬pre(ψz′)). If this call is successful, meaning
the ∀∃ condition holds w.r.t. ψz and ψz′ , the transition is added as a real must-transition
and all (possible) must-transitions that have the same source but a less precise target
are removed, since their existence does not increase precision. Otherwise, the transition
and all possible must-transitions that have the same source but a more precise target
are removed (they cannot become real must-transitions). The less (resp. more) precise
targets are given by the configurations that are backwards (resp. forwards) reachable
from (z′, q′) via focus-transitions. This is justified by the invariant that the abstract state
of the target of a focus-transition is always finer, i.e. more precise, than the abstract state
of its source. In Fig. 2, ‘ascertaining must-transition’ is performed from (m) into (n).

Ascertaining initial configuration (Line 21). Splitting of configurations might result in
multiple initial configurations. However, recall that initial configurations are always in
C0 ∪ C1 and thus their abstract states are disjoint. This ensures that only one of them
abstracts the concrete initial configuration, and the rest are merely overly approximated.
Thus an initial configuration (z, q) ∈ Ci is determined and it is checked if it contains
the concrete initial state. This is done by a theorem prover call Satisfiable(pi ∧ ψz).

State Focusing: Lazy Abstraction for the Mu-Calculus 111

If successful, C i becomes {(z, q)} and z is added to Zsat (since its satisfiability is
ensured). In Fig. 2, ‘ascertaining initial configuration’ is performed from (d) into (e).

Checking satisfiability of abstract states (Line 23). An abstract state z ∈ Z is de-
termined and its (un)satisfiability is checked. This is done by a theorem prover call
Satisfiable(ψz), resp. Unsatisfiable(ψz). If the call is successful, z is added to Zsat,
resp. to Zunsat. Both theorem prover calls are necessary for soundness if incomplete
satisfiability checks are applied. In Fig. 2, ‘checking satisfiability of abstract states’ is
performed from (i) into (j) and from (k) into (l).

Properties of the algorithm. Satisfiability checks are said to be sound if Satisfiable(ψ)
implies that ψ is satisfiable, i.e. [[ψ]] �= ∅, and if Unsatisfiable(ψ) implies that ψ is not
satisfiable, i.e. [[ψ]] = ∅. Satisfiability checks are complete if the reverse implications of
the above constraints hold. LetO = {P.3, ..., P.7}∪{V.1, ..., V.7} denote the execution
lines of PropertyCheck, resp. of Validity, in which simplifications of the game structure
as well as (in)validity determinations are made. In the following, PropertyCheck also
denotes a more liberal version of it where the lines fromO are not always applied after
every refinement step as long as (in)validity determinations are applied infinitely often
(more precisely, the bundle of the three Lines V.1,V.2,V,5 are infinitely often calculated
after a refinement step). This means that more than one refinement step is calculated at
once. We have that our algorithm is correct and no validity information is lost during
an execution (even if the more liberal version is used):

Theorem 1 (Soundness). Let satisfiability checks be sound. If PropertyCheck(A, T)
based on any heuristic returns tt (resp. ff), then T |= A (resp. T �|= A) holds.

Theorem 2 (Incremental). Suppose satisfiability checks are sound, P is a property-
game obtained during the execution of PropertyCheck(A, T), and P is valid (resp.
invalid) in c ∈ C. Then the execution of any line of PropertyCheck or Validity yields a
property-game that is valid (resp. invalid) in c or that does not contain c anymore.

The algorithm is relatively complete for least fixpoint free formulas (and is often also
successful for formulas containing least fixpoints). Note that this statement is not im-
plied by the relative completeness of generalized Kripke modal transition systems, since
not all hypertransitions are calculated.

Theorem 3 (Relative completeness). Suppose satisfiability checks are sound and com-
plete andL can describe every subset of S. If the acceptance function of A maps always
to zero (i.e. a least fixpoint free μ-calculus formula is encoded) and T |= A, then any
heuristic applied for the first, say n, refinement determination steps, can be extended to
a (not necessarily computable) one such that PropertyCheck(A, T) returns tt.

Theorem 3 does not hold if we restrict to computable refinement heuristics, since oth-
erwise the halting problem would be decidable. Furthermore, Theorem 3 does not hold
for automata with arbitrary acceptance function, since the underlying class of abstract
models is not expressive enough. To handle arbitrary functions, fairness constraints, as
in [6,8], are needed.

112 H. Fecher and S. Shoham

Remark 2. Previous CEGAR-algorithms, including ours [10], usually need less refine-
ment steps than our new algorithm, since it has a very fundamental laziness. Never-
theless, our algorithm can mimic the refinement steps of the other algorithms without
increasing its computation time by calculating all refinements made by the other algo-
rithms in a single step before calling Validity. We expect our algorithm to be in general
faster than the others, since we can use improved heuristics that avoid the expensive
cost of refinement-calculations by restricting to the relevant calculations.

4 Conclusion

We presented a new CEGAR-based algorithm for μ-calculus verification, which is
based on the lazy abstraction technique. We obtained the high level of laziness by de-
veloping a new philosophy of a refinement step, namely state focusing: The to be split
configuration is not removed and is, e.g., used to model hypertransitions. Our algorithm
avoids state explosion and, at the same time, remains complete for least fixpoint free
formulas. The heuristics presented in [10] can be straightforwardly adapted to our set-
ting. Determination of heuristics that better support the finer lazy abstraction approach
of our new algorithm, and a prototype implementation, are topics for future work.

References

1. Ball, T., Kupferman, O.: An abstraction-refinement framework for multi-agent systems. In:
LICS, pp. 379–388 (2006)

2. Ball, T., Kupferman, O., Sagiv, M.: Leaping loops in the presence of abstraction. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 491–503. Springer, Heidelberg
(2007)

3. Ball, T., Kupferman, O., Yorsh, G.: Abstraction for falsification. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 67–81. Springer, Heidelberg (2005)

4. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model checking
C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 268–283.
Springer, Heidelberg (2001)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

6. Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time model
checking. In: LICS, pp. 335–344 (2004)

7. Fecher, H., Huth, M.: Model checking for action abstraction. In: VMCAI. LNCS, vol. 4905,
pp. 112–126 (2008)

8. Fecher, H., Huth, M.: Ranked predicate abstraction for branching time: Complete, incremen-
tal, and precise. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 322–336.
Springer, Heidelberg (2006)

9. Fecher, H., Huth, M., Schmidt, H., Schönborn, J.: Refinement sensitive formal semantics of
state machines with persistent choice. In: AVoCS (2007) (will appear in ENiTCS)

10. Fecher, H., Shoham, S.: Local abstraction-refinement for the mu-calculus. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 4–23. Springer, Heidelberg (2007)

11. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal
transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 426–440. Springer, Heidelberg (2001)

State Focusing: Lazy Abstraction for the Mu-Calculus 113

12. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning:
Abstraction and refinement for the full μ-calculus. Information and Compuatation 205(8),
1130–1148 (2007)

14. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in the μ-calculus. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer, Heidelberg (2005)

15. Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In: Hermanns, H.,
Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 212–226. Springer, Heidelberg (2006)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70
(2002)

17. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation for three-
valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169.
Springer, Heidelberg (2001)

18. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

19. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–354 (1983)
20. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210 (1988)
21. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp.

108–117 (1990)
22. Namjoshi, K.S.: Abstraction for branching time properties. In: Hunt Jr., W.A., Somenzi, F.

(eds.) CAV 2003. LNCS, vol. 2725, pp. 288–300. Springer, Heidelberg (2003)
23. Pardo, A., Hachtel, G.D.: Incremental CTL model checking using BDD subsetting. In: DAC,

pp. 457–462 (1998)
24. Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for CTL. In: Jensen, K., Podel-

ski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 546–560. Springer, Heidelberg (2004)
25. Shoham, S., Grumberg, O.: 3-Valued Abstraction: More Precision at Less Cost. In: LICS,

pp. 399–410 (2006)

Efficient Modeling of Concurrent Systems in BMC

Malay K. Ganai and Aarti Gupta

NEC Labs America, Princeton, NJ, USA

Abstract. We present an efficient method for modeling multi-threaded concur-
rent systems with shared variables and locks in Bounded Model Checking
(BMC), and use it to improve the detection of safety properties such as data races.
Previous approaches based on synchronous modeling of interleaving semantics
do not scale up well due to the inherent asynchronism in those models. Instead,
in our approach, we first create independent (uncoupled) models for each individ-
ual thread in the system, then explicitly add additional synchronization variables
and constraints, incrementally, and only where such synchronization is needed to
guarantee the (chosen) concurrency semantics (based on sequential consistency).
We describe our modeling in detail and report verification results to demonstrate
the efficacy of our approach on a complex case study.

1 Introduction

The growth of cheap and ubiquitous multi-processor systems and concurrent library
support are making concurrency programming very attractive. On the other hand, verifi-
cation of concurrent systems remains a daunting task especially due to complex and un-
expected interactions between asynchronous threads, and various architecture-specific
memory consistency models [1]. In this work, we focus on concurrency semantics based
on sequential consistency [2]. In this semantics, the observer has a view of only the local
history of the individual threads where the operations respect the program order. Fur-
ther, all the memory operations exhibit a common total order that respect the program
order and has the read value property, i.e., the read of a variable returns the last write
on the same variable in that total order. In the presence of synchronization primitives
such as locks/unlocks, the concurrency semantics also respects the mutual exclusion
of operations that are guarded by matching locks. Sequential consistency is the most
commonly used concurrency semantics for software development due to ease of pro-
gramming, especially to obtain race-free, i.e, correctly synchronized threads. A data
race corresponds to a global state where two different threads access the same shared
variable, and at least one of them is a write.

Bounded Model Checking (BMC) [3] has been successfully applied to verify real-
world designs. Strengths of BMC are manifold: First, expensive quantification used
in symbolic model checking [4] is avoided. Second, reachable states are not stored,
avoiding blow-up of intermediate state representation. Third, modern SAT solvers are
able to search through the relevant paths of the problem even though the paths get
longer with the each BMC unrolling. We focus on verifying concurrent systems through
efficient modeling in BMC.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 114–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Modeling of Concurrent Systems in BMC 115

1.1 Related Work

We discuss various model checking efforts, both explicit and symbolic, for verifying
concurrent systems with shared memory. The general problem of verifying a concur-
rent system with even two threads with unbounded stacks is undecidable [5]. In practice,
these verification efforts use incomplete methods, or imprecise models, or sometimes
both, to address the scalability of the problem. The verification model is typically ob-
tained by composing individual thread models using interleaving semantics, and model
checkers are applied to systematically explore the global state space. Model checkers
such as Verisoft [6], Zing [7] explore states and transitions of the concurrent system
using explicit enumeration. Although several state space reduction techniques based
on partial order methods [8] and transactions-based methods [9, 10, 11, 12] have been
proposed, these techniques do not scale well due to both state explosion and explicit
enumeration.

Symbolic model checkers such as BDD-based SMV [4], and SAT-based Bounded
Model Checking (BMC) [3] use symbolic representation and traversal of state space,
and have been shown to be effective for verifying synchronous hardware designs. There
have been some efforts [13, 14, 15, 16] to combine symbolic model checking with the
above mentioned state-reduction methods for verifying concurrent software. However,
they still suffer from lack of scalability. To overcome this limitation, some researchers
have employed sound abstraction [7] with bounded number of context switches [17],
while some others have used finite-state model [15, 18] or Boolean program abstrac-
tions with bounded depth analysis [19]. This is also combined with a bounded number
of context switches known a priori [15] or a proof-guided method to discover them [18].
To the best of our knowledge, all these model checking methods use synchronous mod-
eling of interleaving semantics. As we see later, our focus is to move away from such
synchronous modeling in BMC in order to obtain significant reduction in the size of the
BMC instances.

Another development is the growing popularity of Satisfiability-Modulo Theory
(SMT)-solvers such as [20]. Due to their support for richer expressive theories be-
yond Boolean logic, and several latest advancements, SMT-based methods are provid-
ing more scalable alternatives than BDD-based or SAT-based methods. In SMT-based
BMC, a BMC problem is translated typically into a quantifier-free formula in a decid-
able subset of first order logic, instead of translating it into a propositional formula, and
the formula is then checked for satisfiability using an SMT solver. Specifically, with
several acceleration techniques, SMT-based BMC has been shown [21] to scale better
than SAT-based BMC for finding bugs.

There have been parallel efforts [22, 23, 24] to detect bugs for weaker memory mod-
els. As shown in [25], one can check these models using axiomatic memory style speci-
fications combined with constraint solvers. Note, though these methods support various
memory models, they check for bugs using given test programs. There has been no
effort so far, to our knowledge, to integrate such specifications in a model checking
framework that does not require test programs. There have been other efforts using
static analysis [26, 27] to detect static races. Unlike these methods, our goal is to find
true bugs and to not report false warnings.

116 M.K. Ganai and A. Gupta

1.2 Our Approach: Overview

We present an efficient modeling for multi-threaded concurrent systems with shared
variables and locks in BMC. We consider C threads under the assumption of a bounded
heap and bounded stack. Using this modeling, we augment SMT-based BMC to de-
tect violations of safety properties such as data races. The main novelty of our ap-
proach is that it provides a sound and complete modeling with respect to the considered
concurrency semantics, without the expensive synchronous modeling of interleaving
semantics. Specifically, we do not introduce wait-cycles to model interleaving of the
individual threads, and do not model a scheduler explicitly. As we see later, these wait-
cycles are detrimental to the performance of BMC. Instead, we first create indepen-
dent (decoupled) individual thread models, and add memory consistency constraints
lazily, incrementally, and on-the-fly during BMC unrolling to capture the considered
concurrency semantics. Our modeling preserves with respect to a property the set of
all possible executions up to a bounded depth that satisfy the sequential consistency
and synchronization semantics, without requiring an a priori bound on the number
of context switches. We have implemented our techniques in a prototype SMT-based
BMC framework, and demonstrate its effectiveness through controlled experiments on
a complex concurrency benchmark. For experiments, we contrast our lazy modeling
approach with an eager modeling [13,14,15,16] of the concurrent system, i.e., a mono-
lithic model synchronously composed with interleaving semantics (and possibly, with
state-reduction constraints) enforced by an explicit scheduler, capturing all concurrent
behaviors of the system eagerly.

1.3 Our Contributions

The main idea of our modeling paradigm for concurrent systems is to move away from
expensive modeling based on synchronous interleaving semantics. We focus primarily
on reducing the size of the BMC problem instances to enable deeper search within the
limited resources, both time and memory. Features and merits of our approach are:

1. Lazy modeling constraints: By adding the constraints lazily, i.e., as needed for a
bounded depth analysis, as opposed to adding them eagerly, we reduce the BMC
problem size at that depth. The size of these concurrency-modeling constraints de-
pends quadratically on the number of shared memory accesses at any given BMC
depth in the worst case. Since the analysis depth of BMC bounds the number of
shared memory accesses, these constraints are typically smaller than the model
with constraints added eagerly, in practice.

2. No wait-cycle: We do not allow local wait cycles, i.e., there are no self-loops in
read/write blocks with shared accesses. This enables us to obtain a reduced set of
statically reachable blocks at a given BMC depth d, which dramatically reduces the
set of pair-wise concurrency constraints that we need to add to the BMC problem.

3. Deeper analysis: For a given BMC depth D and n concurrent threads, we guarantee
finding a witness trace (if it exists), i.e., a sequence of global interleaved transitions,
of length ≤ n · D, where the number of local thread transitions is at most D. In
contrast, an eager modeling approach using BMC [14], an unrolling depth of n ·D
is needed for such a guarantee. Thus, we gain in memory use by a factor of n.

Efficient Modeling of Concurrent Systems in BMC 117

4. Using static analysis: We use property preserving model transformations such as
path/loop balancing, and context-sensitive control state reachability to reduce the
set of blocks that are statically reachable at a given depth. Again, this potentially
reduces the lazy modeling constraints. We also use lockset [10,9,14] analysis to re-
duce the set of constraints, by statically identifying which block pairs (with shared
accesses) are simultaneously unreachable.

5. SMT-based BMC: We use an SMT solver instead of a traditional SAT solver, to
exploit the richer expressiveness, in contrast to bit-blasting. We effectively capture
the exclusivity of the pair-wise constraints, i.e., for a chosen shared access pair,
other pairs with a common access are implied invalid immediately.

Outline: We provide a short background in Section 2; motivation in Section 3; illustrate
our basic approach with an example in Section 4; formal description of our modeling
in Section 5; correctness theorems and discussion on size complexity in Section 6;
BMC size-reduction techniques in Section 7; followed by experiments in Section 8,
and conclusions in Section 9.

2 Preliminaries

2.1 Concurrent System: Model and Semantics

We consider a concurrent system comprising a finite number of deterministic bounded-
stack threads communicating with shared variables, some of which are used as syn-
chronization objects such as locks. Each thread has a finite set of control states and can
be modeled as an extended finite state machine (EFSM). An EFSM model is a 5-tuple
(s0, C, I, D, T) where, s0 is an initial state, C is a set of control states (or blocks), I is
a set of inputs, D is a set of data state variables (with possibly infinite range), and T is
a set of 4-tuple (c, g, u, c′) transitions where c, c′ ∈ C, g is a Boolean-valued enabling
condition (or guard) on state and input variables, u is an update function on state and
input variables.

We define a concurrent system model CS as a 4-tuple (M,V , T , s0), where M
denotes a finite set of EFSM models, i.e., M = {M1, · · · , Mn} with Mi =
(s0i, Ci, Ii, Di ∪ V , Ti), V denotes a finite set of shared(or global) variables i.e.,
V = {g1, · · · , gm}, T denotes a finite set of transitions, i.e., T =

⋃
i Ti, s0 denotes

the initial global state. Note, for i �= j, Ci ∩ Cj = ∅, Ii ∩ Ij = ∅, Di ∩ Dj = ∅,
and Ti ∩ Tj = ∅, i.e., except for shared variables V , each Mi is disjoint. Let V Li

denote a set of tuples values for local data state variables in Di, and V G denote
a set of tuple values for shared variables in V . A global state s of CS is a tuple
(s1, · · · , sn, v) ∈ S = (C1 × V L1) · · · × (Cn × V Ln) × V G where si ∈ Ci × V Li

and v ∈ V G denotes the values of the shared global variables. Note, si denotes the
local state tuple (ci, xi) where ci ∈ Ci represents the local control state, and xi ∈ V Li

represents the local data state. A global transition system for CS is an interleaved com-
position of the individual EFSM models, Mi. Each global transition consists of firing of
a local transition ti = (ai, gi, ui, bi) ∈ T . In a given global state s, the local transition
ti of model Mi is said to be scheduled if ci = ai, where ci is the local control state
component of si. Further, if enabling predicate gi evaluates to true in s, we say that ti is

118 M.K. Ganai and A. Gupta

enabled. Note, in general, more than one local transition of model Mi can be scheduled
but exactly one of them can be enabled (Mi is a deterministic EFSM). The set of all
transitions that are enabled in a state s is denoted by enabled(s).

We can obtain a synchronous execution model for CS by defining a scheduling func-
tion E : M × S �→ {0, 1} such that t is said to be executed at global state s, iff
t ∈ enabled(s) ∩ Ti and E(Mi, s) = 1. Note, in interleaved semantics, at most one
enabled transition can be executed at a global state s. In this synchronous execution
model, each thread local state si (with shared access) has a wait-cycle, i.e., a self-loop
to allow all possible interleavings.

Semantics of a sequentially consistent memory model [2, 25] are as follows:

– Program Order Rule: Shared accesses, i.e. read/write to shared variables, should
follow individual program thread semantics.

– Total Order Rule: Shared accesses across all threads should have a total order.
– Read Value Rule: A read access of a shared variable should observe the effect of

the last write access to the same variable in the total order.
– Mutual Exclusion Rule: Shared accesses in matched locks/unlock operations should

be mutually exclusive.

Thread P1 Thread P2
1a. g1 = 0; x = 0; 1b. g1 = 0; y = 0;

l1 = 0; l1 = 0;
2a. lock(l1); 2b. lock(l1);
3a. if (g1 = 1) 3b. if (g1 = 0)

goto 6a; goto 6b;
4a. g1 = 1; 4b. g1 = 0;
5a. x + +; 5b. y + +;
6a. unlock(l1); 6b. unlock(l1)
7a. assert(x > 0); 7b. g1 = 1;

E

1a

2a

3a

4a

x=g1=l1=0

Lock(l1)

[g1=1∧∧∧∧E1]

Unlock(l1)

g1=1

6a

assert(x>0)

read(g1)

5ax++

7a

¬¬¬¬E1

¬¬¬¬E1

¬¬¬¬E1

E1

scheduler

[g1≠≠≠≠1∧∧∧∧E1]

1b

2b

3b

4b

Lock(l1)

[g1=0∧∧∧∧E2]

Unlock(l1)

g1=0

6b

read(g1)

5by++

7bg1=1

y=g1=l1=0

¬¬¬¬E2

¬¬¬¬E2

¬¬¬¬E2

¬¬¬¬E2

¬¬¬¬E2
E2

[g1≠≠≠≠0∧∧∧∧E1]

1a

2a

3a

4a

x=g1=l1=0

Lock(l1)

[g1=1]

Unlock(l1)

g1=1

6a

assert(x>0)

read(g1)

5ax++

7a

1b

2b

3b

4b

Lock(l1)

[g1=0]

Unlock(l1)

g1=0

6b

read(g1)

5by++

7bg1=1

y=g1=l1=0

[g1≠≠≠≠1] [g1≠≠≠≠0]

¬¬¬¬E1

M1
M2

E

1a

2a

3a

4a

x=g1=l1=0

Lock(l1)

[g1=1∧∧∧∧E1]

Unlock(l1)

g1=1

6a

assert(x>0)

read(g1)

5ax++

7a

¬¬¬¬E1

¬¬¬¬E1

¬¬¬¬E1

E1

scheduler

[g1≠≠≠≠1∧∧∧∧E1]

1b

2b

3b

4b

Lock(l1)

[g1=0∧∧∧∧E2]

Unlock(l1)

g1=0

6b

read(g1)

5by++

7bg1=1

y=g1=l1=0

¬¬¬¬E2

¬¬¬¬E2

¬¬¬¬E2

¬¬¬¬E2

¬¬¬¬E2
E2

[g1≠≠≠≠0∧∧∧∧E1]

1a

2a

3a

4a

x=g1=l1=0

Lock(l1)

[g1=1]

Unlock(l1)

g1=1

6a

assert(x>0)

read(g1)

5ax++

7a

1b

2b

3b

4b

Lock(l1)

[g1=0]

Unlock(l1)

g1=0

6b

read(g1)

5by++

7bg1=1

y=g1=l1=0

[g1≠≠≠≠1] [g1≠≠≠≠0]

¬¬¬¬E1

M1
M2

(a) (b) (c)

Fig. 1. (a) Concurrent system with threads P1 and P2 with local variables x and y respectively,
communicating with lock l1 and shared variable g1. (b) CFG of P1 and P2, and (c) CFG of
concurrent system with scheduler E.

Example: We illustrate a concurrent system comprising threads P1 and P2 with local
variables x and y, respectively, interacting through lock l1 and shared variable g1, as
shown in Figure 1(a). Each numbered statement is atomic, i.e., it cannot be interrupted.
EFSM models M1 and M2 of the two threads P1 and P2 are shown as control flow
graphs (CFG) in Figure 1(b). Note, M1 is the tuple (c01, C1, I1, D1, T1) with c01 = 1a,
C1 = {1a, · · · , 7a}, I1 = {}, D1 = {x} ∪ {g1, l1}. The transitions are shown by
directed edges with enabling predicates (if not a tautology) shown in square brackets
and update functions are shown on the side of each control state. The model M2 is
similarly defined. An synchronously interleaved model for the concurrent system with
threads P1 and P2, i.e., CS= ({M1, M2}, {g1, l1}, {T1, T2}, ((1a, x), (1b, y), (g1, l1))),
with global shared variable g1 and lock variable l1, and a scheduler E is shown in
Figure 1(c). It is obtained by inserting a wait-cycle, i.e., a self-loop at each control state

Efficient Modeling of Concurrent Systems in BMC 119

of model Mi and associating the edge with a Boolean guard Ei such that Ei = 1 iff
E(Mi, s) = 1. To understand the need for such wait-cycles, consider a global state s
with thread control states at 2a and 6b, respectively. To explore both the interleaving
2a → 3a and 6b → 7b from s, each thread needs to wait when the other makes the
transition. By noting that the transitions at control states 5a, 7a, and 5b correspond to
non-shared memory accesses, one can remove the self-loops at these control states. In
general, however, all self-loops can not be removed.

2.2 Building EFSMs from C Threads

For brevity, we highlight the essentials in building a thread model (EFSM) from a C
thread (using the F-Soft framework [28]) under the assumption of a bounded heap and
a bounded stack. First we obtain a simplified CFG by creating an explicit memory
model for (finite) data structures and heap memory, where indirect memory accesses
through pointers are converted to direct accesses by using auxiliary variables. We model
arrays and pointer arithmetic precisely using a sound pointer analysis. We model loops
in the CFG without unrolling them. We handle non-recursive procedures by creating a
single copy (i.e., not inlining) and using extra variables to encode the call/return sites.
Recursive procedures are inlined up to some user-chosen depth. We perform merging
of control nodes in CFG involving parallel assignments to local variables into a basic
block, where possible, to reduce the number of such blocks. We, however, keep each
shared access as a separate block to allow context-switches.

From the simplified CFG, we build an EFSM with each basic block identified with
a unique id value, and a control state variable PC denoting the current block id. We
construct a symbolic transition relation for PC, that represent the guarded transitions
between the basic blocks. For each data variable, we add an update transition relation
based on the expressions assigned to the variable in various basic blocks in the CFG.
We use Boolean expressions and arithmetic expressions to represent the guarded and
update transition functions, respectively.

2.3 Control State Reachability (CSR) and CSR-Based BMC Simplification

Control state reachability (CSR) analysis is a breadth-first traversal of the CFG (cor-
responding to an EFSM model), where a control state b is one step reachable from a
iff there is a transition edge a −→ b. At a given sequential depth d, let R(d) represent
the set of control states that can be reached statically, i.e., ignoring the guards, in one
step from the states in R(d − 1), with R(0) = s0. Computing CSR for the CFG of
M1 shown in Figure 1(b), we obtain the set R(d) for the first six depths as follows:
R(0) = {1a}, R(1) = {2a}, R(2) = {3a}, R(3) = {4a, 6a}, R(4) = {5a, 7a},
R(5) = {6a}, R(6) = {7a}. For some d, if R(d− 1) �= R(d) = R(d + 1), we say that
the CSR saturates at depth d, and R(t) = R(d) for t > d.

CSR can be used to reduce size of a BMC instance significantly [21]. Basically, if
a control state r �∈ R(d), then the unrolled transition relation of variables that depend
on r can be simplified. We define a Boolean predicate Br ≡ (PC = r), where PC
is the program counter that tracks the current control state. Let vd denote the unrolled
variable v at depth d during BMC unrolling. Consider the thread model M1, where

120 M.K. Ganai and A. Gupta

the next state of variable g1 is defined as next(g1) = B1a? 0 : B4a? 1 : g1 (using C
language notation ?,: for cascaded if-then-else). At depths k �∈ {0, 3}, Bk

1a = Bk
4a = 0

since 1a, 4a �∈ R(k). Using this unreachability control state information, we can hash
the expression representation for gk+1

1 to the existing expression gk
1 , i.e., gk+1

1 = gk
1 .

This hashing, i.e., reusing of expressions, considerably reduces the size of the logic
formula, i.e., the BMC instance.

3 Motivation: Why Wait-Cycles Are Bad?

The scope of CSR-based BMC simplification is reduced considerably by a large car-
dinality of the set R(d), i.e., |R(d)|, and hence, the performance of BMC also gets
affected adversely. In general, re-converging paths of different lengths and different
loop lengths are mainly responsible for enlarging set R, due to inclusion of all control
states in a loop, and ultimately leading to saturation [21]. For example, computing CSR
on the concurrent synchronous model (Figure 1(c)), we obtain R(d) as follows:

R(0)= {1a, 1b}, R(1)= {2a, 2b}, R(2)= {2a, 3a, 2b, 3b}, R(3)= {2a, 3a, 4a, 6a, 2b, 3b, 4b, 6b},
R(4)= {2a, 3a, 4a, 5a, 6a, 7a, 2b, 3b, 4b, 5b, 6b, 7b}, R(t)= R(4) for t > 4 (Saturates at 4)

Clearly, saturation is inevitable due to the presence of self-loops. At t ≥ 4, the BMC
unrolled transition relation cannot be simplified further using unreachable control states,
i.e., not in R(t). Thus, the scope of reusing the expression for next state logic expression
is also reduced heavily. In general, saturation can also be caused by program loops. To
overcome that we use a Balancing Re-convergence strategy [21] effectively to balance
the lengths of the re-convergent paths and loops by inserting NOP states. An NOP state
does not change the transition relation of any variable. However, this approach does not
work well in the presence of self-loops.

In our experience, synchronous models with self-loops for modeling interleaving se-
mantics are not directly suitable for verifying concurrent systems using BMC. Instead,
we propose a modeling paradigm that eliminates self-loops with the goal of reducing
the size of BMC instances. However, there are many challenges in doing so.

– We would like to have soundness and completeness, i.e., neither to miss true wit-
nesses nor to report spurious witnesses (up to some bounded depth). We do so by
decoupling the individual thread models, and add the required memory consistency
constraints on-the-fly to the unrolled BMC instances. This allows us to exploit ad-
vances in SMT-based BMC, without the expensive modeling of interleaving se-
mantics. Note that for bounded analysis the number of shared memory accesses are
also bounded, and therefore, these constraints are typically smaller than the model
with constraints added eagerly, in practice.

– We also would like to formulate and solve iterative BMC problems incrementally,
and integrate seamlessly state-of-the-art advancements in static analysis and BMC.
We achieve our goals in a lazy modeling paradigm that simultaneously facilitates
the use of several static techniques such as context-sensitive CSR and lockset anal-
ysis [10, 9, 14] and model transformations [21] to improve BMC significantly.

Efficient Modeling of Concurrent Systems in BMC 121

4 Lazy Modeling Paradigm: Overview

We illustrate the main idea of our modeling using an example in Section 4.1, and high-
light novelties in our approach in Section 1.3. A formal exposition of the modeling and
its soundness is provided in Section 5.

4.1 Basic Approach

As a first step in our modeling, we construct abstract and independent (i.e. decoupled)
thread models LM1 and LM2 corresponding to the threads P1 and P2 as shown in Fig-
ure 2. We introduce atomic thread-specific procedures read sync and write sync
before and after every shared access. In Figure 2, the control states ri and wi correspond
to calls to procedures read synci and write synci, respectively. We also intro-
duce global variables TK , CS1, and CS2 described later. For each thread, we make the
global variables localized by renaming. As shown in Figure 2, for P1 (and similarly for
P2), we rename g1, l1, TK , CS1, and CS2 to local variables g11, l11, TK1, CS11, and
CS21, respectively. The localized shared variables get non-deterministic (ND) values in
the control state ri. (Refer Section 5.1 for detailed instrumentation.) The models LMi

obtained after annotations are independent since the update transition relation for each
variable now depends only on the local state variables. Note, there are no self-loops in
these models. However, due to ND read values for shared variables in ri control state,
these models have additional behaviors, which we eliminate by adding concurrency
constraints as described below.

1a

2a

3a

4a

x=g11=l11=0

[g11=1]

assume(l11=1)
l11=0

g11=1

6a

assert(x>0)

read(g11)

5ax++

7a

r1

w1

r1

w1

w1

r1

w1

r1

1b

2b

3b

4b

y=g12=l12=0

[g12=0]

g12=0

6b

read(g12)

5by++

7b

r2

w2

r2

w2

w2

r2

w2

r2

r2

w2

LM2: CFG of annotated P2

assume(l12=1)
l12=0

assume(l12=0)
l12=1

assume(l11=0)
l11=1

//r2 atomic
//updates
read_sync2:=
g12 =ND()
CS12=ND()
CS22=ND()
TK2 = ND()
l12=ND()
RD2=ND()

//w2 atomic
//updates
write_sync2:=
TK2 = ND()

LM1: CFG of annotated P1

g12=1

//r1 atomic
//updates
read_sync1:=
g11 =ND()
CS11=ND()
CS21=ND()
TK1 = ND()
l11=ND()
RD1=ND()

//w1 atomic
//updates
write_sync1:=
TK1 = ND()

1a

2a

3a

4a

x=g11=l11=0

[g11=1]

assume(l11=1)
l11=0

g11=1

6a

assert(x>0)

read(g11)

5ax++

7a

r1

w1

r1

w1

w1

r1

w1

r1

1b

2b

3b

4b

y=g12=l12=0

[g12=0]

g12=0

6b

read(g12)

5by++

7b

r2

w2

r2

w2

w2

r2

w2

r2

r2

w2

LM2: CFG of annotated P2

assume(l12=1)
l12=0

assume(l12=0)
l12=1

assume(l11=0)
l11=1

//r2 atomic
//updates
read_sync2:=
g12 =ND()
CS12=ND()
CS22=ND()
TK2 = ND()
l12=ND()
RD2=ND()

//w2 atomic
//updates
write_sync2:=
TK2 = ND()

LM1: CFG of annotated P1

g12=1

//r1 atomic
//updates
read_sync1:=
g11 =ND()
CS11=ND()
CS21=ND()
TK1 = ND()
l11=ND()
RD1=ND()

//w1 atomic
//updates
write_sync1:=
TK1 = ND()

Fig. 2. CFG of threads P1 and P2 with annotations

We unroll each model LMi independently during BMC (i.e, with possibly different
unroll depths). To each BMC instance, we add concurrency constraints on-the-fly be-
tween each pair of control states with accesses to shared variables, that are statically
reachable in unrolled CFG at the corresponding thread-specific depths. For sequential

122 M.K. Ganai and A. Gupta

1a

r1

2a

w1

r1

3a

w1

r1

4a 6a

w1

1b

r2

2b

w2

r2

3b

w2

r2

4b 6b

w2

d=0

1

2

3

4

5

6

7

8

9

Unrolled CFG LM1 Unrolled CFG LM2

On the fly Concurrency Constraints
at a BMC unrolled depth dRC1

1=0
RC

1
1=1

RC
1 1=2

RW
1,2 1,9 WC2

3=2

WC2
3=0

WC2
3=3

WC
2 3=1

d=0

1

2

3

4

5

6

7

8

9

r2
7a 5a 5b

RC
1 1=3

10
10A lockset analysis can remove

all pair-wise constraints
except for the following pairs:
(r2@1,w1@9), (r1@1,w2@9), (r2@10, w1@3),
(r2@10,w1@5), and (r2@10,w1@9)

1a

r1

2a

w1

r1

3a

w1

r1

4a 6a

w1

1b

r2

2b

w2

r2

3b

w2

r2

4b 6b

w2

d=0

1

2

3

4

5

6

7

8

9

Unrolled CFG LM1 Unrolled CFG LM2

On the fly Concurrency Constraints
at a BMC unrolled depth dRC1

1=0
RC

1
1=1

RC
1 1=2

RW
1,2 1,9 WC2

3=2

WC2
3=0

WC2
3=3

WC
2 3=1

d=0

1

2

3

4

5

6

7

8

9

r2
7a 5a 5b

RC
1 1=3

10
10A lockset analysis can remove

all pair-wise constraints
except for the following pairs:
(r2@1,w1@9), (r1@1,w2@9), (r2@10, w1@3),
(r2@10,w1@5), and (r2@10,w1@9)

150 D=0

100 D=42

93 D=49

158 D=54

151 D=1

41 D=42

112 D=49

161 D=54

45 D=2

102 D=42

131 D=49

153 D=54

46 D=3

103 D=42

82 D=49

154 D=54

79 D=4

27 D=42

47 D=49

146 D=54

80 D=5

109 D=42

86 D=49

156 D=54

142 D=6

110 D=42

87 D=49

157 D=54

143 D=7

118 D=42

71 D=49

159 D=54

83 D=8

111 D=42

90 D=49

160 D=54

84 D=9

119 D=42

91 D=49

162 D=54

27 D=10

121 D=42

99 D=49

163 D=54

85 D=11

122 D=42

92 D=49

172 D=54

104 D=11

128 D=42

75 D=49

166 D=54

123 D=11

129 D=42

94 D=49

167 D=54

86 D=12

137 D=42

95 D=49

4151

105 D=12

130 D=42

41 D=49

5175

124 D=12

138 D=42

141 D=49

13367

87 D=13

144 D=42

100 D=49

6199

106 D=13

145 D=42

102 D=49

11319

125 D=13

81 D=42

103 D=49

59447

71 D=14

148 D=42

27 D=49

17463

72 D=15

4 D=43

105 D=49

18487

60 D=16

5 D=43

106 D=49

26679

61 D=17

13 D=43

109 D=49

19511

14 D=18

6 D=43

110 D=49

24631

17 D=19

11 D=43

118 D=49

63543

18 D=20

58 D=43

111 D=49

87095

26 D=20

17 D=43

113 D=49

106551

19 D=21

62 D=43

114 D=49

126007

62 D=21

85 D=43

119 D=49

31799

26 D=22

104 D=43

121 D=49

32823

24 D=22

123 D=43

122 D=49

41015

64 D=22

31 D=43

124 D=49

33847

17 D=23

32 D=43

125 D=49

38967

62 D=23

40 D=43

128 D=49

44087

65 D=23

33 D=43

129 D=49

43063

67 D=23

38 D=43

137 D=49

28727

18 D=24

43 D=43

130 D=49

45111

26 D=24

42 D=43

132 D=49

98359

64 D=24

28 D=43

133 D=49

103479

70 D=24

44 D=43

138 D=49

117815

68 D=24

96 D=43

144 D=49

122935

69 D=24

101 D=43

145 D=49

137271

19 D=25

115 D=43

81 D=49

142391

62 D=25

120 D=43

148 D=49

49207

65 D=25

134 D=43

147 D=49

155703

67 D=25

139 D=43

142 D=49

51255

70 D=25

50 D=43

149 D=49

52279

73 D=25

51 D=43

155 D=49

54327

26 D=26

53 D=43

158 D=49

57399

24 D=26

56 D=43

161 D=49

55351

64 D=26

54 D=43

153 D=49

56375

70 D=26

55 D=43

154 D=49

58423

68 D=26

57 D=43

146 D=49

1079

69 D=26

1 D=43

156 D=49

60471

73 D=26

59 D=43

157 D=49

78903

74 D=26

77 D=43

159 D=49

62519

17 D=27

65 D=43

160 D=49

14391

62 D=27

67 D=43

162 D=49

65591

65 D=27

70 D=43

163 D=49

66615

67 D=27

73 D=43

172 D=49

68663

70 D=27

74 D=43

166 D=49

71735

73 D=27

88 D=43

167 D=49

69687

74 D=27

107 D=43

4 D=50

70711

88 D=27

126 D=43

5 D=50

74807

107 D=27

76 D=43

13 D=50

73783

126 D=27

49 D=43

6 D=50

61495

18 D=28

82 D=43

11 D=50

75831

26 D=28

86 D=43

58 D=50

90167

64 D=28

90 D=43

17 D=50

109623

70 D=28

91 D=43

26 D=50

129079

68 D=28

99 D=43

24 D=50

77879

69 D=28

92 D=43

85 D=50

50231

73 D=28

75 D=43

104 D=50

79927

74 D=28

141 D=43

123 D=50

95287

88 D=28

100 D=43

31 D=50

114743

107 D=28

41 D=43

32 D=50

134199

126 D=28

102 D=43

40 D=50

84023

90 D=28

103 D=43

33 D=50

48183

109 D=28

27 D=43

38 D=50

86071

128 D=28

105 D=43

43 D=50

27703

19 D=29

109 D=43

42 D=50

88119

62 D=29

110 D=43

28 D=50

89143

65 D=29

118 D=43

44 D=50

72759

67 D=29

111 D=43

96 D=50

92215

70 D=29

119 D=43

101 D=50

93239

73 D=29

121 D=43

115 D=50

101431

74 D=29

122 D=43

120 D=50

94263

88 D=29

124 D=43

134 D=50

76855

107 D=29

128 D=43

139 D=50

96311

126 D=29

129 D=43

48 D=50

97335

90 D=29

137 D=43

152 D=50

42039

91 D=29

130 D=43

50 D=50

144439

99 D=29

138 D=43

51 D=50

102455

109 D=29

144 D=43

53 D=50

104503

110 D=29

145 D=43

56 D=50

105527

118 D=29

81 D=43

54 D=50

107575

128 D=29

148 D=43

55 D=50

108599

129 D=29

149 D=43

57 D=50

111671

137 D=29

4 D=44

1 D=50

112695

26 D=30

5 D=44

59 D=50

120887

24 D=30

13 D=44

77 D=50

113719

64 D=30

6 D=44

61 D=50

115767

70 D=30

11 D=44

14 D=50

116791

68 D=30

58 D=44

64 D=50

121911

69 D=30

18 D=44

70 D=50

123959

73 D=30

26 D=44

68 D=50

124983

74 D=30

85 D=44

69 D=50

127031

88 D=30

104 D=44

73 D=50

128055

107 D=30

123 D=44

72 D=50

131127

126 D=30

31 D=44

60 D=50

132151

90 D=30

32 D=44

74 D=50

140343

91 D=30

40 D=44

88 D=50

133175

99 D=30

33 D=44

107 D=50

135223

92 D=30

38 D=44

126 D=50

136247

100 D=30

43 D=44

76 D=50

141367

109 D=30

42 D=44

49 D=50

147511

110 D=30

28 D=44

78 D=50

146487

118 D=30

44 D=44

93 D=50

85047

111 D=30

96 D=44

112 D=50

148535

119 D=30

101 D=44

131 D=50

82999

128 D=30

115 D=44

82 D=50

151607

129 D=30

120 D=44

47 D=50

150583

137 D=30

134 D=44

86 D=50

145463

130 D=30

139 D=44

87 D=50

152631

138 D=30

50 D=44

71 D=50

158775

17 D=31

51 D=44

90 D=50

161847

62 D=31

53 D=44

91 D=50

164919

65 D=31

56 D=44

99 D=50

156727

67 D=31

54 D=44

92 D=50

157751

70 D=31

55 D=44

75 D=50

149559

73 D=31

57 D=44

94 D=50

159799

74 D=31

1 D=44

95 D=50

160823

88 D=31

59 D=44

41 D=50

162871

107 D=31

77 D=44

141 D=50

163895

126 D=31

64 D=44

100 D=50

165943

90 D=31

70 D=44

102 D=50

166967

91 D=31

68 D=44

103 D=50

176183

99 D=31

69 D=44

27 D=50

170039

92 D=31

73 D=44

105 D=50

171063

75 D=31

74 D=44

106 D=50

100 D=31

88 D=44

109 D=50

41 D=31

107 D=44

110 D=50

109 D=31

126 D=44

118 D=50

110 D=31

76 D=44

111 D=50

118 D=31

49 D=44

113 D=50

111 D=31

78 D=44

114 D=50

119 D=31

82 D=44

119 D=50

128 D=31

47 D=44

121 D=50

129 D=31

86 D=44

122 D=50

137 D=31

87 D=44

124 D=50

130 D=31

90 D=44

125 D=50

138 D=31

91 D=44

128 D=50

18 D=32

99 D=44

129 D=50

26 D=32

92 D=44

137 D=50

42 D=32

75 D=44

130 D=50

64 D=32

141 D=44

132 D=50

70 D=32

100 D=44

133 D=50

68 D=32

41 D=44

138 D=50

69 D=32

102 D=44

144 D=50

73 D=32

103 D=44

143 D=50

74 D=32

27 D=44

145 D=50

88 D=32

105 D=44

81 D=50

107 D=32

106 D=44

148 D=50

126 D=32

109 D=44

147 D=50

76 D=32

110 D=44

142 D=50

90 D=32

118 D=44

149 D=50

91 D=32

111 D=44

155 D=50

99 D=32

119 D=44

158 D=50

92 D=32

121 D=44

161 D=50

75 D=32

122 D=44

153 D=50

100 D=32

124 D=44

154 D=50

41 D=32

125 D=44

146 D=50

109 D=32

128 D=44

156 D=50

110 D=32

129 D=44

157 D=50

118 D=32

137 D=44

159 D=50

111 D=32

130 D=44

160 D=50

119 D=32

138 D=44

162 D=50

128 D=32

144 D=44

163 D=50

129 D=32

145 D=44

172 D=50

137 D=32

81 D=44

166 D=50

130 D=32

148 D=44

167 D=50

138 D=32

149 D=44

4 D=51

19 D=33

155 D=44

5 D=51

62 D=33

158 D=44

13 D=51

42 D=33

161 D=44

6 D=51

28 D=33

4 D=45

11 D=51

65 D=33

5 D=45

58 D=51

67 D=33

13 D=45

17 D=51

70 D=33

6 D=45

18 D=51

73 D=33

11 D=45

26 D=51

74 D=33

58 D=45

62 D=51

88 D=33

19 D=45

85 D=51

107 D=33

62 D=45

104 D=51

126 D=33

85 D=45

123 D=51

76 D=33

104 D=45

31 D=51

49 D=33

123 D=45

32 D=51

90 D=33

31 D=45

40 D=51

91 D=33

32 D=45

33 D=51

99 D=33

40 D=45

38 D=51

92 D=33

33 D=45

43 D=51

75 D=33

38 D=45

42 D=51

100 D=33

43 D=45

28 D=51

41 D=33

42 D=45

44 D=51

109 D=33

28 D=45

96 D=51

110 D=33

44 D=45

101 D=51

118 D=33

96 D=45

115 D=51

111 D=33

101 D=45

120 D=51

119 D=33

115 D=45

134 D=51

128 D=33

120 D=45

139 D=51

129 D=33

134 D=45

48 D=51

137 D=33

139 D=45

152 D=51

130 D=33

48 D=45

50 D=51

138 D=33

50 D=45

51 D=51

26 D=34

51 D=45

53 D=51

24 D=34

53 D=45

56 D=51

31 D=34

56 D=45

54 D=51

42 D=34

54 D=45

55 D=51

28 D=34

55 D=45

57 D=51

50 D=34

57 D=45

1 D=51

64 D=34

1 D=45

59 D=51

70 D=34

59 D=45

77 D=51

68 D=34

77 D=45

61 D=51

69 D=34

65 D=45

14 D=51

73 D=34

67 D=45

65 D=51

74 D=34

70 D=45

67 D=51

88 D=34

73 D=45

70 D=51

107 D=34

74 D=45

73 D=51

126 D=34

88 D=45

72 D=51

76 D=34

107 D=45

60 D=51

49 D=34

126 D=45

74 D=51

90 D=34

76 D=45

88 D=51

91 D=34

49 D=45

107 D=51

99 D=34

78 D=45

126 D=51

92 D=34

93 D=45

76 D=51

75 D=34

112 D=45

49 D=51

100 D=34

131 D=45

78 D=51

41 D=34

82 D=45

93 D=51

109 D=34

47 D=45

112 D=51

110 D=34

86 D=45

131 D=51

118 D=34

87 D=45

82 D=51

111 D=34

71 D=45

47 D=51

119 D=34

90 D=45

86 D=51

128 D=34

91 D=45

87 D=51

129 D=34

99 D=45

71 D=51

137 D=34

92 D=45

90 D=51

130 D=34

75 D=45

91 D=51

138 D=34

141 D=45

99 D=51

17 D=35

100 D=45

92 D=51

62 D=35

41 D=45

75 D=51

31 D=35

102 D=45

94 D=51

32 D=35

103 D=45

95 D=51

40 D=35

27 D=45

41 D=51

42 D=35

105 D=45

141 D=51

28 D=35

106 D=45

100 D=51

50 D=35

109 D=45

102 D=51

51 D=35

110 D=45

103 D=51

53 D=35

118 D=45

27 D=51

65 D=35

111 D=45

105 D=51

67 D=35

119 D=45

106 D=51

70 D=35

121 D=45

109 D=51

73 D=35

122 D=45

110 D=51

74 D=35

124 D=45

118 D=51

88 D=35

125 D=45

111 D=51

107 D=35

128 D=45

113 D=51

126 D=35

129 D=45

114 D=51

76 D=35

137 D=45

119 D=51

49 D=35

130 D=45

121 D=51

90 D=35

138 D=45

122 D=51

91 D=35

144 D=45

124 D=51

99 D=35

145 D=45

125 D=51

92 D=35

81 D=45

128 D=51

75 D=35

148 D=45

129 D=51

100 D=35

149 D=45

137 D=51

41 D=35

155 D=45

130 D=51

109 D=35

158 D=45

132 D=51

110 D=35

161 D=45

133 D=51

118 D=35

156 D=45

138 D=51

111 D=35

159 D=45

144 D=51

119 D=35

162 D=45

143 D=51

128 D=35

4 D=46

83 D=51

129 D=35

5 D=46

145 D=51

137 D=35

13 D=46

81 D=51

130 D=35

6 D=46

148 D=51

138 D=35

11 D=46

147 D=51

18 D=36

58 D=46

142 D=51

26 D=36

26 D=46

149 D=51

31 D=36

24 D=46

155 D=51

32 D=36

85 D=46

158 D=51

40 D=36

104 D=46

161 D=51

33 D=36

123 D=46

153 D=51

43 D=36

31 D=46

154 D=51

42 D=36

32 D=46

146 D=51

28 D=36

40 D=46

156 D=51

50 D=36

33 D=46

157 D=51

51 D=36

38 D=46

159 D=51

53 D=36

43 D=46

160 D=51

56 D=36

42 D=46

162 D=51

54 D=36

28 D=46

163 D=51

55 D=36

44 D=46

172 D=51

64 D=36

96 D=46

166 D=51

70 D=36

101 D=46

167 D=51

68 D=36

115 D=46

4 D=52

69 D=36

120 D=46

5 D=52

73 D=36

134 D=46

13 D=52

74 D=36

139 D=46

6 D=52

88 D=36

48 D=46

11 D=52

107 D=36

152 D=46

58 D=52

126 D=36

50 D=46

17 D=52

76 D=36

51 D=46

18 D=52

49 D=36

53 D=46

26 D=52

90 D=36

56 D=46

19 D=52

91 D=36

54 D=46

62 D=52

99 D=36

55 D=46

85 D=52

92 D=36

57 D=46

104 D=52

75 D=36

1 D=46

123 D=52

100 D=36

59 D=46

31 D=52

41 D=36

77 D=46

32 D=52

109 D=36

64 D=46

40 D=52

110 D=36

70 D=46

33 D=52

118 D=36

68 D=46

38 D=52

111 D=36

69 D=46

43 D=52

119 D=36

73 D=46

42 D=52

128 D=36

72 D=46

28 D=52

129 D=36

74 D=46

44 D=52

137 D=36

88 D=46

96 D=52

130 D=36

107 D=46

101 D=52

138 D=36

126 D=46

115 D=52

19 D=37

76 D=46

120 D=52

62 D=37

49 D=46

134 D=52

31 D=37

78 D=46

139 D=52

32 D=37

93 D=46

48 D=52

40 D=37

112 D=46

152 D=52

33 D=37

131 D=46

50 D=52

38 D=37

82 D=46

51 D=52

43 D=37

47 D=46

53 D=52

42 D=37

86 D=46

56 D=52

28 D=37

87 D=46

54 D=52

44 D=37

71 D=46

55 D=52

50 D=37

90 D=46

57 D=52

51 D=37

91 D=46

1 D=52

53 D=37

99 D=46

59 D=52

56 D=37

92 D=46

77 D=52

54 D=37

75 D=46

61 D=52

55 D=37

94 D=46

14 D=52

57 D=37

141 D=46

64 D=52

65 D=37

100 D=46

70 D=52

67 D=37

41 D=46

68 D=52

70 D=37

102 D=46

69 D=52

73 D=37

103 D=46

73 D=52

74 D=37

27 D=46

72 D=52

88 D=37

105 D=46

60 D=52

107 D=37

106 D=46

74 D=52

126 D=37

109 D=46

88 D=52

76 D=37

110 D=46

107 D=52

49 D=37

118 D=46

126 D=52

90 D=37

111 D=46

76 D=52

91 D=37

113 D=46

49 D=52

99 D=37

119 D=46

78 D=52

92 D=37

121 D=46

93 D=52

75 D=37

122 D=46

112 D=52

100 D=37

124 D=46

131 D=52

41 D=37

125 D=46

82 D=52

109 D=37

128 D=46

47 D=52

110 D=37

129 D=46

84 D=52

118 D=37

137 D=46

86 D=52

111 D=37

130 D=46

87 D=52

119 D=37

132 D=46

71 D=52

128 D=37

138 D=46

90 D=52

129 D=37

144 D=46

91 D=52

137 D=37

145 D=46

99 D=52

130 D=37

81 D=46

92 D=52

138 D=37

148 D=46

75 D=52

26 D=38

149 D=46

94 D=52

24 D=38

155 D=46

95 D=52

31 D=38

158 D=46

41 D=52

32 D=38

161 D=46

141 D=52

40 D=38

156 D=46

100 D=52

33 D=38

157 D=46

102 D=52

38 D=38

159 D=46

103 D=52

43 D=38

160 D=46

27 D=52

42 D=38

162 D=46

105 D=52

28 D=38

163 D=46

106 D=52

44 D=38

4 D=47

109 D=52

96 D=38

5 D=47

110 D=52

101 D=38

13 D=47

118 D=52

115 D=38

6 D=47

111 D=52

120 D=38

11 D=47

113 D=52

134 D=38

58 D=47

114 D=52

139 D=38

17 D=47

119 D=52

50 D=38

62 D=47

121 D=52

51 D=38

85 D=47

122 D=52

53 D=38

104 D=47

124 D=52

56 D=38

123 D=47

125 D=52

54 D=38

31 D=47

128 D=52

55 D=38

32 D=47

129 D=52

57 D=38

40 D=47

137 D=52

1 D=38

33 D=47

130 D=52

64 D=38

38 D=47

132 D=52

70 D=38

43 D=47

133 D=52

68 D=38

42 D=47

138 D=52

69 D=38

28 D=47

144 D=52

73 D=38

44 D=47

143 D=52

74 D=38

96 D=47

83 D=52

88 D=38

101 D=47

145 D=52

107 D=38

115 D=47

81 D=52

126 D=38

120 D=47

148 D=52

76 D=38

134 D=47

147 D=52

49 D=38

139 D=47

142 D=52

90 D=38

48 D=47

149 D=52

91 D=38

152 D=47

155 D=52

99 D=38

50 D=47

158 D=52

92 D=38

51 D=47

161 D=52

75 D=38

53 D=47

153 D=52

100 D=38

56 D=47

154 D=52

41 D=38

54 D=47

146 D=52

109 D=38

55 D=47

156 D=52

110 D=38

57 D=47

157 D=52

118 D=38

1 D=47

159 D=52

111 D=38

59 D=47

160 D=52

119 D=38

77 D=47

162 D=52

128 D=38

65 D=47

163 D=52

129 D=38

67 D=47

172 D=52

137 D=38

70 D=47

166 D=52

130 D=38

73 D=47

167 D=52

138 D=38

72 D=47

4 D=53

4 D=39

60 D=47

5 D=53

17 D=39

74 D=47

13 D=53

62 D=39

88 D=47

6 D=53

31 D=39

107 D=47

11 D=53

32 D=39

126 D=47

58 D=53

40 D=39

76 D=47

17 D=53

33 D=39

49 D=47

18 D=53

38 D=39

78 D=47

26 D=53

43 D=39

93 D=47

19 D=53

42 D=39

112 D=47

24 D=53

28 D=39

131 D=47

62 D=53

44 D=39

82 D=47

85 D=53

96 D=39

47 D=47

104 D=53

101 D=39

86 D=47

123 D=53

115 D=39

87 D=47

31 D=53

120 D=39

71 D=47

32 D=53

134 D=39

90 D=47

40 D=53

139 D=39

91 D=47

33 D=53

50 D=39

99 D=47

38 D=53

51 D=39

92 D=47

43 D=53

53 D=39

75 D=47

42 D=53

56 D=39

94 D=47

28 D=53

54 D=39

95 D=47

44 D=53

55 D=39

141 D=47

96 D=53

57 D=39

100 D=47

101 D=53

1 D=39

41 D=47

115 D=53

65 D=39

102 D=47

120 D=53

67 D=39

103 D=47

134 D=53

70 D=39

27 D=47

139 D=53

73 D=39

105 D=47

48 D=53

74 D=39

106 D=47

152 D=53

88 D=39

109 D=47

50 D=53

107 D=39

110 D=47

51 D=53

126 D=39

118 D=47

53 D=53

76 D=39

111 D=47

56 D=53

49 D=39

113 D=47

54 D=53

90 D=39

114 D=47

55 D=53

91 D=39

119 D=47

57 D=53

99 D=39

121 D=47

1 D=53

92 D=39

122 D=47

59 D=53

75 D=39

124 D=47

77 D=53

141 D=39

125 D=47

61 D=53

100 D=39

128 D=47

14 D=53

41 D=39

129 D=47

64 D=53

102 D=39

137 D=47

65 D=53

109 D=39

130 D=47

67 D=53

110 D=39

132 D=47

70 D=53

118 D=39

133 D=47

73 D=53

111 D=39

138 D=47

72 D=53

119 D=39

144 D=47

60 D=53

121 D=39

145 D=47

74 D=53

128 D=39

81 D=47

88 D=53

129 D=39

148 D=47

107 D=53

137 D=39

149 D=47

126 D=53

130 D=39

155 D=47

76 D=53

138 D=39

158 D=47

49 D=53

4 D=40

161 D=47

78 D=53

5 D=40

153 D=47

93 D=53

13 D=40

156 D=47

112 D=53

18 D=40

157 D=47

131 D=53

26 D=40

146 D=47

82 D=53

31 D=40

159 D=47

47 D=53

32 D=40

160 D=47

84 D=53

40 D=40

162 D=47

27 D=53

33 D=40

163 D=47

86 D=53

38 D=40

172 D=47

87 D=53

43 D=40

166 D=47

71 D=53

42 D=40

4 D=48

90 D=53

28 D=40

5 D=48

91 D=53

44 D=40

13 D=48

99 D=53

96 D=40

6 D=48

92 D=53

101 D=40

11 D=48

75 D=53

115 D=40

58 D=48

94 D=53

120 D=40

18 D=48

95 D=53

134 D=40

26 D=48

41 D=53

139 D=40

85 D=48

141 D=53

50 D=40

104 D=48

100 D=53

51 D=40

123 D=48

102 D=53

53 D=40

31 D=48

103 D=53

56 D=40

32 D=48

105 D=53

54 D=40

40 D=48

106 D=53

55 D=40

33 D=48

109 D=53

57 D=40

38 D=48

110 D=53

1 D=40

43 D=48

118 D=53

64 D=40

42 D=48

111 D=53

70 D=40

28 D=48

113 D=53

68 D=40

44 D=48

114 D=53

69 D=40

96 D=48

119 D=53

73 D=40

101 D=48

121 D=53

74 D=40

115 D=48

122 D=53

88 D=40

120 D=48

124 D=53

107 D=40

134 D=48

125 D=53

126 D=40

139 D=48

128 D=53

76 D=40

48 D=48

129 D=53

49 D=40

152 D=48

137 D=53

90 D=40

50 D=48

130 D=53

91 D=40

51 D=48

132 D=53

99 D=40

53 D=48

133 D=53

92 D=40

56 D=48

138 D=53

75 D=40

54 D=48

144 D=53

141 D=40

55 D=48

143 D=53

100 D=40

57 D=48

83 D=53

41 D=40

1 D=48

145 D=53

102 D=40

59 D=48

81 D=53

103 D=40

77 D=48

148 D=53

109 D=40

61 D=48

147 D=53

110 D=40

64 D=48

142 D=53

118 D=40

70 D=48

149 D=53

111 D=40

68 D=48

155 D=53

119 D=40

69 D=48

158 D=53

121 D=40

73 D=48

161 D=53

122 D=40

72 D=48

153 D=53

128 D=40

60 D=48

154 D=53

129 D=40

74 D=48

146 D=53

137 D=40

88 D=48

156 D=53

130 D=40

107 D=48

157 D=53

138 D=40

126 D=48

159 D=53

144 D=40

76 D=48

160 D=53

4 D=41

49 D=48

162 D=53

5 D=41

78 D=48

163 D=53

13 D=41

93 D=48

172 D=53

6 D=41

112 D=48

166 D=53

58 D=41

131 D=48

167 D=53

19 D=41

82 D=48

4 D=54

62 D=41

47 D=48

5 D=54

31 D=41

86 D=48

13 D=54

32 D=41

87 D=48

6 D=54

40 D=41

71 D=48

11 D=54

33 D=41

90 D=48

58 D=54

38 D=41

91 D=48

17 D=54

43 D=41

99 D=48

18 D=54

42 D=41

92 D=48

26 D=54

28 D=41

75 D=48

19 D=54

44 D=41

94 D=48

24 D=54

96 D=41

95 D=48

62 D=54

101 D=41

41 D=48

85 D=54

115 D=41

141 D=48

104 D=54

120 D=41

100 D=48

123 D=54

134 D=41

102 D=48

31 D=54

139 D=41

103 D=48

32 D=54

50 D=41

27 D=48

40 D=54

51 D=41

105 D=48

33 D=54

53 D=41

106 D=48

38 D=54

56 D=41

109 D=48

43 D=54

54 D=41

110 D=48

42 D=54

55 D=41

118 D=48

28 D=54

57 D=41

111 D=48

44 D=54

1 D=41

113 D=48

96 D=54

65 D=41

114 D=48

101 D=54

67 D=41

119 D=48

115 D=54

70 D=41

121 D=48

120 D=54

73 D=41

122 D=48

134 D=54

74 D=41

124 D=48

139 D=54

88 D=41

125 D=48

48 D=54

107 D=41

128 D=48

152 D=54

126 D=41

129 D=48

50 D=54

76 D=41

137 D=48

51 D=54

49 D=41

130 D=48

53 D=54

90 D=41

132 D=48

56 D=54

91 D=41

133 D=48

54 D=54

99 D=41

138 D=48

55 D=54

92 D=41

144 D=48

57 D=54

75 D=41

145 D=48

1 D=54

141 D=41

81 D=48

59 D=54

100 D=41

148 D=48

77 D=54

41 D=41

147 D=48

61 D=54

102 D=41

149 D=48

14 D=54

103 D=41

155 D=48

64 D=54

27 D=41

158 D=48

65 D=54

109 D=41

161 D=48

67 D=54

110 D=41

153 D=48

70 D=54

118 D=41

154 D=48

68 D=54

111 D=41

156 D=48

69 D=54

119 D=41

157 D=48

73 D=54

121 D=41

146 D=48

72 D=54

122 D=41

159 D=48

60 D=54

128 D=41

160 D=48

74 D=54

129 D=41

162 D=48

88 D=54

137 D=41

163 D=48

107 D=54

130 D=41

172 D=48

126 D=54

138 D=41

166 D=48

76 D=54

144 D=41

167 D=48

49 D=54

145 D=41

4 D=49

78 D=54

4 D=42

5 D=49

93 D=54

5 D=42

13 D=49

112 D=54

13 D=42

6 D=49

131 D=54

6 D=42

11 D=49

82 D=54

11 D=42

58 D=49

47 D=54

58 D=42

19 D=49

84 D=54

26 D=42

62 D=49

27 D=54

24 D=42

85 D=49

86 D=54

85 D=42

104 D=49

87 D=54

104 D=42

123 D=49

71 D=54

123 D=42

31 D=49

90 D=54

31 D=42

32 D=49

91 D=54

32 D=42

40 D=49

99 D=54

40 D=42

33 D=49

92 D=54

33 D=42

38 D=49

75 D=54

38 D=42

43 D=49

94 D=54

43 D=42

42 D=49

95 D=54

42 D=42

28 D=49

41 D=54

28 D=42

44 D=49

141 D=54

44 D=42

96 D=49

100 D=54

96 D=42

101 D=49

102 D=54

101 D=42

115 D=49

103 D=54

115 D=42

120 D=49

105 D=54

120 D=42

134 D=49

106 D=54

134 D=42

139 D=49

109 D=54

139 D=42

48 D=49

110 D=54

50 D=42

152 D=49

118 D=54

51 D=42

50 D=49

111 D=54

53 D=42

51 D=49

113 D=54

56 D=42

53 D=49

114 D=54

54 D=42

56 D=49

119 D=54

55 D=42

54 D=49

121 D=54

57 D=42

55 D=49

122 D=54

1 D=42

57 D=49

124 D=54

59 D=42

1 D=49

125 D=54

64 D=42

59 D=49

128 D=54

70 D=42

77 D=49

129 D=54

68 D=42

61 D=49

137 D=54

69 D=42

14 D=49

130 D=54

73 D=42

65 D=49

132 D=54

74 D=42

67 D=49

133 D=54

88 D=42

70 D=49

138 D=54

107 D=42

73 D=49

144 D=54

126 D=42

72 D=49

143 D=54

76 D=42

60 D=49

83 D=54

49 D=42

74 D=49

145 D=54

90 D=42

88 D=49

81 D=54

91 D=42

107 D=49

148 D=54

99 D=42

126 D=49

147 D=54

92 D=42

76 D=49

142 D=54

75 D=42

49 D=49

149 D=54

141 D=42

78 D=49

155 D=54

D=54
saturation

CSR: Eager with
No Path Balance
No Context-sensitive

|R(d)|=54, #NOP=0

150 D=0

33 D=67

76 D=91

151 D=1

42 D=67

93 D=91

45 D=2

96 D=67

112 D=91

46 D=3

101 D=67

134235

79 D=4

117827

90 D=91

80 D=5

122947

109 D=91

142 D=6

137283

180 D=91

143 D=7

142403

186 D=91

83 D=8

181 D=67

190 D=91

84 D=9

54 D=67

194 D=91

27 D=10

55 D=67

198 D=91

85 D=11

70 D=67

202 D=91

106507

72 D=67

206 D=91

125963

76 D=67

210 D=91

86 D=12

93 D=67

5 D=92

87 D=13

114755

175 D=92

71 D=14

134211

18 D=92

72 D=15

90 D=67

177 D=92

60 D=16

109 D=67

40 D=92

61 D=17

180 D=67

38 D=92

14 D=18

186 D=67

28 D=92

17 D=19

5 D=68

56 D=92

18 D=20

175 D=68

59 D=92

177 D=20

18 D=68

64 D=92

19 D=21

177 D=68

73 D=92

178 D=21

40 D=68

60 D=92

26 D=22

38 D=68

49 D=92

24 D=22

28 D=68

91 D=92

17 D=23

56 D=68

99 D=92

62 D=23

59 D=68

94 D=92

18 D=24

64 D=68

183 D=92

177 D=24

73 D=68

102 D=92

64 D=24

60 D=68

105 D=92

19 D=25

49 D=68

110 D=92

65 D=25

91 D=68

118 D=92

67 D=25

99 D=68

113 D=92

178 D=25

94 D=68

121 D=92

26 D=26

183 D=68

124 D=92

24 D=26

102 D=68

187 D=92

182 D=26

105 D=68

191 D=92

68 D=26

110 D=68

195 D=92

69 D=26

118 D=68

199 D=92

17 D=27

187 D=68

203 D=92

62 D=27

6 D=69

207 D=92

70 D=27

19 D=69

211 D=92

18 D=28

31 D=69

6 D=93

177 D=28

43 D=69

19 D=93

64 D=28

50 D=69

31 D=93

73 D=28

57 D=69

43 D=93

19 D=29

77 D=69

50 D=93

65 D=29

61 D=69

57 D=93

67 D=29

65 D=69

77 D=93

74 D=29

67 D=69

61 D=93

178 D=29

74 D=69

65 D=93

26 D=30

92 D=69

67 D=93

24 D=30

95 D=69

74 D=93

182 D=30

100 D=69

92 D=93

68 D=30

103 D=69

95 D=93

69 D=30

106 D=69

100 D=93

88 D=30

111 D=69

103 D=93

109598

119 D=69

106 D=93

129054

176 D=69

111 D=93

17 D=31

178 D=69

114 D=93

62 D=31

184 D=69

119 D=93

70 D=31

188 D=69

122 D=93

90 D=31

13 D=70

125 D=93

18 D=32

11 D=70

176 D=93

177 D=32

26 D=70

178 D=93

64 D=32

24 D=70

184 D=93

73 D=32

32 D=70

188 D=93

91 D=32

179 D=70

192 D=93

99 D=32

44 D=70

196 D=93

19 D=33

51 D=70

200 D=93

65 D=33

53 D=70

204 D=93

67 D=33

1 D=70

208 D=93

74 D=33

14 D=70

212 D=93

92 D=33

182 D=70

13 D=94

100 D=33

68 D=70

11 D=94

178 D=33

69 D=70

26 D=94

26 D=34

88 D=70

24 D=94

24 D=34

107 D=70

32 D=94

182 D=34

129094

179 D=94

68 D=34

78 D=70

44 D=94

69 D=34

75 D=70

51 D=94

88 D=34

41 D=70

53 D=94

109602

27 D=70

1 D=94

129058

71 D=70

14 D=94

75 D=34

185 D=70

182 D=94

41 D=34

189 D=70

68 D=94

17 D=35

4 D=71

69 D=94

62 D=35

58 D=71

88 D=94

42 D=35

17 D=71

107 D=94

70 D=35

62 D=71

129118

76 D=35

87111

78 D=94

90 D=35

104 D=71

75 D=94

18 D=36

126023

41 D=94

177 D=36

33 D=71

27 D=94

28 D=36

42 D=71

71 D=94

64 D=36

96 D=71

185 D=94

73 D=36

101 D=71

189 D=94

49 D=36

117831

193 D=94

91 D=36

122951

197 D=94

99 D=36

137287

201 D=94

19 D=37

142407

205 D=94

31 D=37

181 D=71

209 D=94

50 D=37

54 D=71

213 D=94

65 D=37

55 D=71

4 D=95

67 D=37

70 D=71

58 D=95

74 D=37

72 D=71

17 D=95

92 D=37

76 D=71

62 D=95

100 D=37

93 D=71

87135

178 D=37

114759

104 D=95

26 D=38

134215

123 D=95

24 D=38

90 D=71

33 D=95

32 D=38

109 D=71

42 D=95

179 D=38

180 D=71

96 D=95

51 D=38

186 D=71

101 D=95

53 D=38

190 D=71

117855

182 D=38

5 D=72

120 D=95

68 D=38

175 D=72

137311

69 D=38

18 D=72

142431

88 D=38

177 D=72

181 D=95

109606

40 D=72

54 D=95

129062

38 D=72

55 D=95

75 D=38

28 D=72

70 D=95

41 D=38

56 D=72

72 D=95

17 D=39

59 D=72

76 D=95

62 D=39

64 D=72

93 D=95

33 D=39

73 D=72

112 D=95

42 D=39

60 D=72

134239

181 D=39

49 D=72

90 D=95

54 D=39

91 D=72

109 D=95

55 D=39

99 D=72

180 D=95

70 D=39

94 D=72

186 D=95

76 D=39

183 D=72

190 D=95

90 D=39

102 D=72

194 D=95

180 D=39

105 D=72

198 D=95

18 D=40

110 D=72

202 D=95

177 D=40

118 D=72

206 D=95

40 D=40

187 D=72

210 D=95

38 D=40

191 D=72

214 D=95

28 D=40

6 D=73

5 D=96

56 D=40

19 D=73

175 D=96

64 D=40

31 D=73

18 D=96

73 D=40

43 D=73

177 D=96

49 D=40

50 D=73

40 D=96

91 D=40

57 D=73

38 D=96

99 D=40

77 D=73

28 D=96

19 D=41

61 D=73

56 D=96

31 D=41

65 D=73

59 D=96

43 D=41

67 D=73

64 D=96

50 D=41

74 D=73

73 D=96

57 D=41

92 D=73

60 D=96

65 D=41

95 D=73

49 D=96

67 D=41

100 D=73

91 D=96

74 D=41

103 D=73

99 D=96

92 D=41

106 D=73

94 D=96

100 D=41

111 D=73

183 D=96

178 D=41

119 D=73

102 D=96

26 D=42

176 D=73

105 D=96

24 D=42

178 D=73

110 D=96

32 D=42

184 D=73

118 D=96

179 D=42

188 D=73

113 D=96

44 D=42

192 D=73

121 D=96

51 D=42

13 D=74

124 D=96

53 D=42

11 D=74

187 D=96

1 D=42

26 D=74

191 D=96

182 D=42

24 D=74

195 D=96

68 D=42

32 D=74

199 D=96

69 D=42

179 D=74

203 D=96

88 D=42

44 D=74

207 D=96

109610

51 D=74

211 D=96

129066

53 D=74

215 D=96

75 D=42

1 D=74

6 D=97

41 D=42

14 D=74

19 D=97

4 D=43

182 D=74

31 D=97

17 D=43

68 D=74

43 D=97

62 D=43

69 D=74

50 D=97

33 D=43

88 D=74

57 D=97

42 D=43

107 D=74

77 D=97

98347

129098

61 D=97

101 D=43

78 D=74

65 D=97

117803

75 D=74

67 D=97

122923

41 D=74

74 D=97

137259

27 D=74

92 D=97

142379

71 D=74

95 D=97

181 D=43

185 D=74

100 D=97

54 D=43

189 D=74

103 D=97

55 D=43

193 D=74

106 D=97

70 D=43

4 D=75

111 D=97

76 D=43

58 D=75

114 D=97

90 D=43

17 D=75

119 D=97

180 D=43

62 D=75

122 D=97

5 D=44

87115

125 D=97

175 D=44

104 D=75

176 D=97

18 D=44

126027

178 D=97

177 D=44

33 D=75

184 D=97

40 D=44

42 D=75

188 D=97

38 D=44

96 D=75

192 D=97

28 D=44

101 D=75

196 D=97

56 D=44

117835

200 D=97

64 D=44

122955

204 D=97

73 D=44

137291

208 D=97

49 D=44

142411

212 D=97

91 D=44

181 D=75

216 D=97

99 D=44

54 D=75

13 D=98

102 D=44

55 D=75

11 D=98

6 D=45

70 D=75

26 D=98

19 D=45

72 D=75

24 D=98

31 D=45

76 D=75

32 D=98

43 D=45

93 D=75

179 D=98

50 D=45

114763

44 D=98

57 D=45

134219

51 D=98

65 D=45

90 D=75

53 D=98

67 D=45

109 D=75

1 D=98

74 D=45

180 D=75

14 D=98

92 D=45

186 D=75

182 D=98

100 D=45

190 D=75

68 D=98

103 D=45

194 D=75

69 D=98

176 D=45

5 D=76

88 D=98

178 D=45

175 D=76

107 D=98

13 D=46

18 D=76

129122

11 D=46

177 D=76

78 D=98

26 D=46

40 D=76

75 D=98

24 D=46

38 D=76

41 D=98

32 D=46

28 D=76

27 D=98

179 D=46

56 D=76

71 D=98

44 D=46

59 D=76

185 D=98

51 D=46

64 D=76

189 D=98

53 D=46

73 D=76

193 D=98

1 D=46

60 D=76

197 D=98

182 D=46

49 D=76

201 D=98

68 D=46

91 D=76

205 D=98

69 D=46

99 D=76

209 D=98

88 D=46

94 D=76

213 D=98

109614

183 D=76

217 D=98

129070

102 D=76

4 D=99

75 D=46

105 D=76

58 D=99

41 D=46

110 D=76

17 D=99

27 D=46

118 D=76

62 D=99

4 D=47

187 D=76

87139

58 D=47

191 D=76

104 D=99

17 D=47

195 D=76

123 D=99

62 D=47

6 D=77

33 D=99

87087

19 D=77

42 D=99

104 D=47

31 D=77

96 D=99

125999

43 D=77

101 D=99

33 D=47

50 D=77

115 D=99

42 D=47

57 D=77

120 D=99

98351

77 D=77

137315

101 D=47

61 D=77

142435

117807

65 D=77

181 D=99

122927

67 D=77

54 D=99

137263

74 D=77

55 D=99

142383

92 D=77

70 D=99

181 D=47

95 D=77

72 D=99

54 D=47

100 D=77

76 D=99

55 D=47

103 D=77

93 D=99

70 D=47

106 D=77

112 D=99

76 D=47

111 D=77

134243

90 D=47

119 D=77

90 D=99

180 D=47

176 D=77

109 D=99

5 D=48

178 D=77

180 D=99

175 D=48

184 D=77

186 D=99

18 D=48

188 D=77

190 D=99

177 D=48

192 D=77

194 D=99

40 D=48

196 D=77

198 D=99

38 D=48

13 D=78

202 D=99

28 D=48

11 D=78

206 D=99

56 D=48

26 D=78

210 D=99

59 D=48

24 D=78

214 D=99

64 D=48

32 D=78

218 D=99

73 D=48

179 D=78

5220

49 D=48

44 D=78

179300

91 D=48

51 D=78

18532

99 D=48

53 D=78

181348

102 D=48

1 D=78

41060

105 D=48

14 D=78

39012

6 D=49

182 D=78

28772

19 D=49

68 D=78

57444

31 D=49

69 D=78

60516

43 D=49

88 D=78

65636

50 D=49

107 D=78

74852

57 D=49

129102

61540

77 D=49

78 D=78

50276

65 D=49

75 D=78

93284

67 D=49

41 D=78

101476

74 D=49

27 D=78

96356

92 D=49

71 D=78

187492

100 D=49

185 D=78

104548

103 D=49

189 D=78

107620

106 D=49

193 D=78

112740

176 D=49

197 D=78

120932

178 D=49

4 D=79

115812

13 D=50

58 D=79

261220

11 D=50

17 D=79

124004

26 D=50

62 D=79

127076

24 D=50

87119

191588

32 D=50

104 D=79

195684

179 D=50

126031

199780

44 D=50

33 D=79

203876

51 D=50

42 D=79

207972

53 D=50

96 D=79

212068

1 D=50

101 D=79

216164

182 D=50

117839

220260

68 D=50

120 D=79

224356

69 D=50

137295

88 D=50

142415

109618

181 D=79

129074

54 D=79

78 D=50

55 D=79

75 D=50

70 D=79

41 D=50

72 D=79

27 D=50

76 D=79

71 D=50

93 D=79

4 D=51

114767

58 D=51

134223

17 D=51

90 D=79

62 D=51

109 D=79

87091

180 D=79

104 D=51

186 D=79

126003

190 D=79

33 D=51

194 D=79

42 D=51

198 D=79

98355

5 D=80

101 D=51

175 D=80

117811

18 D=80

122931

177 D=80

137267

40 D=80

142387

38 D=80

181 D=51

28 D=80

54 D=51

56 D=80

55 D=51

59 D=80

70 D=51

64 D=80

72 D=51

73 D=80

76 D=51

60 D=80

93 D=51

49 D=80

114739

91 D=80

134195

99 D=80

90 D=51

94 D=80

180 D=51

183 D=80

5 D=52

102 D=80

175 D=52

105 D=80

18 D=52

110 D=80

177 D=52

118 D=80

40 D=52

121 D=80

38 D=52

187 D=80

28 D=52

191 D=80

56 D=52

195 D=80

59 D=52

199 D=80

64 D=52

6 D=81

73 D=52

19 D=81

60 D=52

31 D=81

49 D=52

43 D=81

91 D=52

50 D=81

99 D=52

57 D=81

94 D=52

77 D=81

102 D=52

61 D=81

105 D=52

65 D=81

6 D=53

67 D=81

19 D=53

74 D=81

31 D=53

92 D=81

43 D=53

95 D=81

50 D=53

100 D=81

57 D=53

103 D=81

77 D=53

106 D=81

61 D=53

111 D=81

65 D=53

119 D=81

67 D=53

122 D=81

74 D=53

176 D=81

92 D=53

178 D=81

95 D=53

184 D=81

100 D=53

188 D=81

103 D=53

192 D=81

106 D=53

196 D=81

176 D=53

200 D=81

178 D=53

13 D=82

13 D=54

11 D=82

11 D=54

26 D=82

26 D=54

24 D=82

24 D=54

32 D=82

32 D=54

179 D=82

179 D=54

44 D=82

44 D=54

51 D=82

51 D=54

53 D=82

53 D=54

1 D=82

1 D=54

14 D=82

14 D=54

182 D=82

182 D=54

68 D=82

68 D=54

69 D=82

69 D=54

88 D=82

88 D=54

107 D=82

109622

129106

129078

78 D=82

78 D=54

75 D=82

75 D=54

41 D=82

41 D=54

27 D=82

27 D=54

71 D=82

71 D=54

185 D=82

4 D=55

189 D=82

58 D=55

193 D=82

17 D=55

197 D=82

62 D=55

201 D=82

87095

4 D=83

104 D=55

58 D=83

126007

17 D=83

33 D=55

62 D=83

42 D=55

87123

98359

104 D=83

101 D=55

123 D=83

117815

33 D=83

122935

42 D=83

137271

96 D=83

142391

101 D=83

181 D=55

117843

54 D=55

120 D=83

55 D=55

137299

70 D=55

142419

72 D=55

181 D=83

76 D=55

54 D=83

93 D=55

55 D=83

114743

70 D=83

134199

72 D=83

90 D=55

76 D=83

180 D=55

93 D=83

5 D=56

114771

175 D=56

134227

18 D=56

90 D=83

177 D=56

109 D=83

40 D=56

180 D=83

38 D=56

186 D=83

28 D=56

190 D=83

56 D=56

194 D=83

59 D=56

198 D=83

64 D=56

202 D=83

73 D=56

5 D=84

60 D=56

175 D=84

49 D=56

18 D=84

91 D=56

177 D=84

99 D=56

40 D=84

94 D=56

38 D=84

102 D=56

28 D=84

105 D=56

56 D=84

6 D=57

59 D=84

19 D=57

64 D=84

31 D=57

73 D=84

43 D=57

60 D=84

50 D=57

49 D=84

57 D=57

91 D=84

77 D=57

99 D=84

61 D=57

94 D=84

65 D=57

183 D=84

67 D=57

102 D=84

74 D=57

105 D=84

92 D=57

110 D=84

95 D=57

118 D=84

100 D=57

121 D=84

103 D=57

124 D=84

106 D=57

187 D=84

176 D=57

191 D=84

178 D=57

195 D=84

13 D=58

199 D=84

11 D=58

203 D=84

26 D=58

6 D=85

24 D=58

19 D=85

32 D=58

31 D=85

179 D=58

43 D=85

44 D=58

50 D=85

51 D=58

57 D=85

53 D=58

77 D=85

1 D=58

61 D=85

14 D=58

65 D=85

182 D=58

67 D=85

68 D=58

74 D=85

69 D=58

92 D=85

88 D=58

95 D=85

109626

100 D=85

129082

103 D=85

78 D=58

106 D=85

75 D=58

111 D=85

41 D=58

119 D=85

27 D=58

122 D=85

71 D=58

125 D=85

4 D=59

176 D=85

58 D=59

178 D=85

17 D=59

184 D=85

62 D=59

188 D=85

87099

192 D=85

104 D=59

196 D=85

126011

200 D=85

33 D=59

204 D=85

42 D=59

13 D=86

98363

11 D=86

101 D=59

26 D=86

117819

24 D=86

122939

32 D=86

137275

179 D=86

142395

44 D=86

181 D=59

51 D=86

54 D=59

53 D=86

55 D=59

1 D=86

70 D=59

14 D=86

72 D=59

182 D=86

76 D=59

68 D=86

93 D=59

69 D=86

114747

88 D=86

134203

107 D=86

90 D=59

129110

180 D=59

78 D=86

5 D=60

75 D=86

175 D=60

41 D=86

18 D=60

27 D=86

177 D=60

71 D=86

40 D=60

185 D=86

38 D=60

189 D=86

28 D=60

193 D=86

56 D=60

197 D=86

59 D=60

201 D=86

64 D=60

205 D=86

73 D=60

4 D=87

60 D=60

58 D=87

49 D=60

17 D=87

91 D=60

62 D=87

99 D=60

87127

94 D=60

104 D=87

102 D=60

123 D=87

105 D=60

33 D=87

6 D=61

42 D=87

19 D=61

96 D=87

31 D=61

101 D=87

43 D=61

117847

50 D=61

120 D=87

57 D=61

137303

77 D=61

142423

61 D=61

181 D=87

65 D=61

54 D=87

67 D=61

55 D=87

74 D=61

70 D=87

92 D=61

72 D=87

95 D=61

76 D=87

100 D=61

93 D=87

103 D=61

112 D=87

106 D=61

134231

176 D=61

90 D=87

178 D=61

109 D=87

13 D=62

180 D=87

11 D=62

186 D=87

26 D=62

190 D=87

24 D=62

194 D=87

32 D=62

198 D=87

179 D=62

202 D=87

44 D=62

206 D=87

51 D=62

5 D=88

53 D=62

175 D=88

1 D=62

18 D=88

14 D=62

177 D=88

182 D=62

40 D=88

68 D=62

38 D=88

69 D=62

28 D=88

88 D=62

56 D=88

109630

59 D=88

129086

64 D=88

78 D=62

73 D=88

75 D=62

60 D=88

41 D=62

49 D=88

27 D=62

91 D=88

71 D=62

99 D=88

4 D=63

94 D=88

58 D=63

183 D=88

17 D=63

102 D=88

62 D=63

105 D=88

87103

110 D=88

104 D=63

118 D=88

126015

113 D=88

33 D=63

121 D=88

42 D=63

124 D=88

96 D=63

187 D=88

101 D=63

191 D=88

117823

195 D=88

122943

199 D=88

137279

203 D=88

142399

207 D=88

181 D=63

6 D=89

54 D=63

19 D=89

55 D=63

31 D=89

70 D=63

43 D=89

72 D=63

50 D=89

76 D=63

57 D=89

93 D=63

77 D=89

114751

61 D=89

134207

65 D=89

90 D=63

67 D=89

180 D=63

74 D=89

5 D=64

92 D=89

175 D=64

95 D=89

18 D=64

100 D=89

177 D=64

103 D=89

40 D=64

106 D=89

38 D=64

111 D=89

28 D=64

114 D=89

56 D=64

119 D=89

59 D=64

122 D=89

64 D=64

125 D=89

73 D=64

176 D=89

60 D=64

178 D=89

49 D=64

184 D=89

91 D=64

188 D=89

99 D=64

192 D=89

94 D=64

196 D=89

183 D=64

200 D=89

102 D=64

204 D=89

105 D=64

208 D=89

6 D=65

13 D=90

19 D=65

11 D=90

31 D=65

26 D=90

43 D=65

24 D=90

50 D=65

32 D=90

57 D=65

179 D=90

77 D=65

44 D=90

61 D=65

51 D=90

65 D=65

53 D=90

67 D=65

1 D=90

74 D=65

14 D=90

92 D=65

182 D=90

95 D=65

68 D=90

100 D=65

69 D=90

103 D=65

88 D=90

106 D=65

107 D=90

176 D=65

129114

178 D=65

78 D=90

184 D=65

75 D=90

13 D=66

41 D=90

11 D=66

27 D=90

26 D=66

71 D=90

24 D=66

185 D=90

32 D=66

189 D=90

179 D=66

193 D=90

44 D=66

197 D=90

51 D=66

201 D=90

53 D=66

205 D=90

1 D=66

209 D=90

14 D=66

4 D=91

182 D=66

58 D=91

68 D=66

17 D=91

69 D=66

62 D=91

88 D=66

87131

107 D=66

104 D=91

129090

123 D=91

78 D=66

33 D=91

75 D=66

42 D=91

41 D=66

96 D=91

27 D=66

101 D=91

71 D=66

117851

185 D=66

120 D=91

4 D=67

137307

58 D=67

142427

17 D=67

181 D=91

62 D=67

54 D=91

87107

55 D=91

104 D=67

70 D=91

126019

72 D=91

D=100
CSR: Eager with
Path Balance
Context-sensitive

|R(d)| =33, #NOP=13

CSR: Lazy with
Path Balance
Context-sensitive

103 D=0

181 D=215

104 D=1

212 D=215

44 D=2

228 D=215

45 D=3

93 D=216

8 D=4

182 D=216

46 D=5

213 D=216

66565

229 D=216

86021

94 D=217

47 D=6

183 D=217

48 D=7

214 D=217

36 D=8

230 D=217

37 D=9

10 D=218

25 D=10

184 D=218

26 D=11

215 D=218

2 D=12

231 D=218

3 D=13

11 D=219

125 D=14

185 D=219

6 D=14

216 D=219

7 D=15

232 D=219

27 D=16

9 D=220

29 D=17

186 D=220

30 D=18

217 D=220

32 D=18

233 D=220

127 D=19

12 D=221

33 D=19

187 D=221

34 D=19

218 D=221

35 D=20

234 D=221

38 D=21

13 D=222

39 D=22

188 D=222

49 D=23

219 D=222

69655

235 D=222

89111

58591

51 D=24

63711

52 D=25

78047

60 D=25

83167

53 D=26

95 D=223

61 D=26

102623

40 D=27

189 D=223

10 D=27

220 D=223

11 D=28

236 D=223

41 D=28

102 D=224

9 D=29

107745

14 D=29

108 D=225

12 D=30

111 D=225

15 D=30

109 D=226

13 D=31

112 D=226

16 D=31

110 D=227

18 D=31

113 D=227

58400

44 D=228

62 D=32

237 D=228

77856

116 D=228

82976

45 D=229

97312

117 D=229

102432

238 D=229

126 D=32

8 D=230

19 D=32

122 D=230

20 D=32

46 D=231

21 D=33

66791

63 D=33

86247

22 D=34

47 D=232

64 D=34

48 D=233

1 D=35

36 D=234

8 D=35

37 D=235

23 D=36

25 D=236

47140

26 D=237

65 D=36

2 D=238

86052

3 D=239

24 D=37

125 D=240

66 D=37

6 D=240

42 D=38

7 D=241

67 D=38

27 D=242

43 D=39

29 D=243

36 D=39

30 D=244

37 D=40

32 D=244

54 D=40

127 D=245

74792

33 D=245

94248

34 D=245

25 D=41

35 D=246

55 D=41

38 D=247

26 D=42

39 D=248

56 D=42

49 D=249

2 D=43

69881

10 D=43

89337

3 D=44

51 D=250

11 D=44

52 D=251

125 D=45

60 D=251

6 D=45

53 D=252

9 D=45

61 D=252

7 D=46

40 D=253

12 D=46

10 D=253

27 D=47

11 D=254

13 D=47

41 D=254

57 D=48

9 D=255

63536

14 D=255

77872

12 D=256

82992

15 D=256

97328

13 D=257

102448

16 D=257

29 D=48

18 D=257

30 D=49

58626

32 D=49

62 D=258

128 D=49

78082

127 D=50

83202

33 D=50

97538

34 D=50

102658

129 D=50

126 D=258

35 D=51

19 D=258

130 D=51

20 D=258

38 D=52

21 D=259

131 D=52

63 D=259

39 D=53

22 D=260

132 D=53

64 D=260

50230

1 D=261

68 D=54

8 D=261

89142

23 D=262

133 D=54

47366

70 D=55

65 D=262

134 D=55

86278

71 D=56

24 D=263

79 D=56

66 D=263

135 D=56

42 D=264

72 D=57

67 D=264

80 D=57

43 D=265

136 D=57

36 D=265

40 D=58

37 D=266

10 D=58

54 D=266

137 D=58

75018

11 D=59

94474

41 D=59

25 D=267

138 D=59

55 D=267

9 D=60

26 D=268

14 D=60

56 D=268

139 D=60

2 D=269

12 D=61

10 D=269

15 D=61

3 D=270

140 D=61

11 D=270

13 D=62

125 D=271

16 D=62

6 D=271

18 D=62

9 D=271

141 D=62

7 D=272

58431

12 D=272

63551

27 D=273

77887

13 D=273

81 D=63

57 D=274

97343

63762

102463

78098

126 D=63

83218

19 D=63

97554

20 D=63

102674

142 D=63

29 D=274

21 D=64

30 D=275

82 D=64

32 D=275

143 D=64

128 D=275

22 D=65

127 D=276

83 D=65

33 D=276

144 D=65

34 D=276

1 D=66

129 D=276

8 D=66

35 D=277

145 D=66

130 D=277

23 D=67

38 D=278

47171

131 D=278

66627

39 D=279

84 D=67

132 D=279

146 D=67

50456

24 D=68

68 D=280

85 D=68

89368

147 D=68

133 D=280

42 D=69

70 D=281

86 D=69

134 D=281

148 D=69

71 D=282

43 D=70

79 D=282

36 D=70

135 D=282

149 D=70

72 D=283

37 D=71

80 D=283

55367

136 D=283

73 D=71

40 D=284

94279

10 D=284

150 D=71

137 D=284

25 D=72

11 D=285

74 D=72

41 D=285

151 D=72

138 D=285

26 D=73

9 D=286

75 D=73

14 D=286

152 D=73

139 D=286

2 D=74

12 D=287

10 D=74

15 D=287

153 D=74

140 D=287

3 D=75

13 D=288

11 D=75

16 D=288

154 D=75

18 D=288

125 D=76

141 D=288

6 D=76

58657

9 D=76

63777

155 D=76

78113

7 D=77

81 D=289

12 D=77

97569

156 D=77

102689

27 D=78

126 D=289

13 D=78

19 D=289

157 D=78

20 D=289

58447

142 D=289

63567

21 D=290

76 D=79

82 D=290

83023

143 D=290

97359

22 D=291

102479

83 D=291

29 D=79

144 D=291

158 D=79

1 D=292

30 D=80

8 D=292

32 D=80

145 D=292

190 D=80

23 D=293

159 D=80

47397

127 D=81

66853

33 D=81

84 D=293

34 D=81

146 D=293

160 D=81

24 D=294

191 D=81

85 D=294

35 D=82

147 D=294

161 D=82

42 D=295

192 D=82

86 D=295

38 D=83

148 D=295

162 D=83

43 D=296

193 D=83

36 D=296

39 D=84

149 D=296

163 D=84

37 D=297

194 D=84

55593

50261

73 D=297

69717

94505

87 D=85

150 D=297

164 D=85

25 D=298

195 D=85

74 D=298

89 D=86

151 D=298

165 D=86

26 D=299

196 D=86

75 D=299

90 D=87

152 D=299

98 D=87

2 D=300

166 D=87

10 D=300

197 D=87

153 D=300

91 D=88

3 D=301

99 D=88

11 D=301

167 D=88

154 D=301

198 D=88

125 D=302

40 D=89

6 D=302

10 D=89

9 D=302

168 D=89

155 D=302

199 D=89

7 D=303

11 D=90

12 D=303

41 D=90

156 D=303

169 D=90

27 D=304

200 D=90

13 D=304

9 D=91

157 D=304

14 D=91

58673

170 D=91

63793

201 D=91

76 D=305

12 D=92

83249

15 D=92

97585

171 D=92

102705

202 D=92

29 D=305

13 D=93

158 D=305

16 D=93

30 D=306

18 D=93

32 D=306

172 D=93

190 D=306

203 D=93

159 D=306

58462

127 D=307

63582

33 D=307

77918

34 D=307

83038

160 D=307

97374

191 D=307

100 D=94

35 D=308

126 D=94

161 D=308

19 D=94

192 D=308

20 D=94

38 D=309

173 D=94

162 D=309

204 D=94

193 D=309

21 D=95

39 D=310

221 D=95

163 D=310

174 D=95

194 D=310

205 D=95

50487

22 D=96

69943

175 D=96

87 D=311

206 D=96

164 D=311

222 D=96

195 D=311

1 D=97

89 D=312

176 D=97

165 D=312

207 D=97

196 D=312

223 D=97

90 D=313

23 D=98

98 D=313

177 D=98

166 D=313

208 D=98

197 D=313

224 D=98

91 D=314

24 D=99

99 D=314

178 D=99

167 D=314

209 D=99

198 D=314

225 D=99

40 D=315

42 D=100

10 D=315

179 D=100

168 D=315

210 D=100

199 D=315

226 D=100

11 D=316

43 D=101

41 D=316

180 D=101

169 D=316

211 D=101

200 D=316

227 D=101

9 D=317

55398

14 D=317

74854

170 D=317

92 D=102

201 D=317

181 D=102

12 D=318

212 D=102

15 D=318

228 D=102

171 D=318

93 D=103

202 D=318

182 D=103

13 D=319

213 D=103

16 D=319

229 D=103

18 D=319

94 D=104

172 D=319

183 D=104

203 D=319

214 D=104

58688

230 D=104

63808

10 D=105

78144

184 D=105

83264

215 D=105

97600

231 D=105

102720

11 D=106

129344

185 D=106

19776

216 D=106

20800

232 D=106

177472

9 D=107

209216

186 D=107217 D=107 233 D=107

12 D=108187 D=108218 D=108 234 D=108

13 D=109188 D=109219 D=109 235 D=109

58478 63598 77934 83054 95 D=110 102510189 D=110220 D=110 236 D=110

102 D=111

105 D=112 110704 111 D=112

106 D=113 112 D=113

107 D=114 113 D=114

44 D=115 237 D=115116 D=115

45 D=116 117 D=116238 D=116

8 D=117 122 D=117

46 D=118 66678 86134

47 D=119

48 D=120

36 D=121

37 D=122

25 D=123

26 D=124

2 D=125

3 D=126

125 D=127 6 D=127

7 D=128

27 D=129

29 D=130

30 D=131 32 D=131

127 D=132 33 D=132 34 D=132

35 D=133

38 D=134

39 D=135

49 D=136 69768 89224

51 D=137

52 D=138 60 D=138

53 D=139 61 D=139

40 D=140 10 D=140

11 D=14141 D=141

9 D=14214 D=142

12 D=14315 D=143

13 D=14416 D=144 18 D=144

58513 62 D=145 77969 83089 97425 102545126 D=14519 D=145 20 D=145

21 D=146 63 D=146

22 D=147 64 D=147

1 D=148 8 D=148

23 D=149 47253 65 D=149 86165

24 D=150 66 D=150

42 D=151 67 D=151

43 D=152 36 D=152

37 D=15354 D=153 74905 94361

25 D=15455 D=154

26 D=15556 D=155

2 D=15610 D=156

3 D=15711 D=157

125 D=158 6 D=1589 D=158

7 D=15912 D=159

27 D=16013 D=160

57 D=161 63649 77985 83105 97441 102561 29 D=161

30 D=162 32 D=162128 D=162

127 D=163 33 D=163 34 D=163129 D=163

35 D=164130 D=164

38 D=165131 D=165

39 D=166132 D=166

50343 68 D=167 89255133 D=167

70 D=168134 D=168

71 D=169 79 D=169135 D=169

72 D=170 80 D=170136 D=170

40 D=171 10 D=171137 D=171

11 D=17241 D=172138 D=172

9 D=17314 D=173139 D=173

12 D=17415 D=174140 D=174

13 D=17516 D=175 18 D=175141 D=175

58544 63664 78000 81 D=176 97456 102576126 D=17619 D=176 20 D=176142 D=176

21 D=177 82 D=177143 D=177

22 D=178 83 D=178144 D=178

1 D=179 8 D=179145 D=179

23 D=180 47284 66740 84 D=180146 D=180

24 D=181 85 D=181147 D=181

42 D=182 86 D=182148 D=182

43 D=183 36 D=183149 D=183

37 D=18455480 73 D=184 94392150 D=184

25 D=18574 D=185151 D=185

26 D=18675 D=186152 D=186

2 D=18710 D=187153 D=187

3 D=18811 D=188154 D=188

125 D=189 6 D=1899 D=189155 D=189

7 D=19012 D=190156 D=190

27 D=19113 D=191157 D=191

58560 63680 76 D=192 83136 97472 102592 29 D=192158 D=192

30 D=193 32 D=193190 D=193159 D=193

127 D=194 33 D=194 34 D=194160 D=194 191 D=194

35 D=195161 D=195 192 D=195

38 D=196162 D=196 193 D=196

39 D=197163 D=197 194 D=197

50374 69830 87 D=198164 D=198 195 D=198

89 D=199165 D=199 196 D=199

90 D=200 98 D=200166 D=200 197 D=200

91 D=201 99 D=201167 D=201 198 D=201

40 D=202 10 D=202168 D=202 199 D=202

11 D=20341 D=203169 D=203 200 D=203

9 D=20414 D=204170 D=204 201 D=204

12 D=20515 D=205171 D=205 202 D=205

13 D=20616 D=206 18 D=206172 D=206 203 D=206

58575 63695 78031 83151 97487 100 D=207126 D=207 19 D=207 20 D=207173 D=207 204 D=207

21 D=208 221 D=208174 D=208 205 D=208

22 D=209175 D=209 206 D=209 222 D=209

1 D=210176 D=210 207 D=210 223 D=210

23 D=211177 D=211 208 D=211 224 D=211

24 D=212178 D=212 209 D=212 225 D=212

42 D=213179 D=213 210 D=213 226 D=213

43 D=214180 D=214 211 D=214 227 D=214

55511 74967 92 D=215

D=300

|R(d)|=4, #NOP=1

(a) (b)

Fig. 3. (a) Unrolled CFG of thread models LM1 and LM2 with concurrency constraints added
on-the-fly during BMC unrolling. The dark arrows show the token passing events (i.e., context
switches) leading to a data race between source lines 3a and 7b (in Figure 1(a)). (b) CSR graphs
with path balancing (PB), context-sensitive (CXT) for eager/lazy on a thread-model (Green/Red
dots denote non-NOP/NOP blocks, resp.)

consistency, these constraints allow sufficient context-switching to maintain the read
value property, and sequentialize the context-switches to enforce a common total or-
der. Note, in addition to these constraints, a BMC instance comprises transition relation
of all thread models and the property constraints. The transition relation of each thread
model ensures that memory accesses within the thread follow the program order.

To capture context-switching events, we specifically added a Boolean shared variable
referred to as token (TK). The semantics of a token asserted by a thread is equivalent
to a guarantee that all visible operations, i.e., shared memory accesses, issued so
far have been committed for other threads to see. Initially, only one thread (chosen
non-deterministically) is allowed to assert its token. To track the sequentiality of the
global execution and maintain total order, we also add two global clock variables (one
per thread) i.e., CS1 and CS2 to timestamp [2] the token passing events. The pair-wise
constraints, added between shared access states, allow passing of the token. When-
ever the token is passed from thread LMi (post-access shared state) to LMj (pre-access

Efficient Modeling of Concurrent Systems in BMC 123

shared state) the concurrency constraints ensure that each localized shared variable of
LMj gets the current state value of the corresponding localized shared variable of LMi,
and the clock variables get synchronized. We call these pair-wise constraints as Read-
Write Synchronization Constraints as described in Section 5.2 with more details.

We illustrate the concurrency constraints added in Figure 3(a). Let c@k denote
the control state c reached statically at depth k. Computing CSR, we obtain R(0) =
{1a@0, 1b@0}, R(1) = {r1@1, r2@1}, R(2) = {2a@2, 2b@2}and so on. The concur-
rency constraints added between a pair (ri@k, wj@h) are shown as an arrow from wj

(of LMj) at depth h to ri (of LMi) at depth k. Note, ri corresponds to pre-access shared
state of LMi, and wj corresponds to post-access shared state of LMj . These constraints
also capture the exclusivity of the pair, i.e., constraint for pair (ri@k, wj@h), excludes
other pairs (ri@k,*) and (*,wj@h). For BMC at depth d < 3 we do not add any pair-
wise constraints. For BMC at d = 3, we add concurrency constraints corresponding
to pairs (r1@1, w2@3) and (r2@1, w1@3). For BMC at d = 4, we add concurrency
constraints corresponding to pairs (r1@1, w2@3), (r2@1, w1@3), (r1@4, w2@3), and
(r2@4, w1@3). Note, in incremental formulation of BMC, we only need to add the
constraints corresponding to the last two pairs. In general, the constraints grow quadrat-
ically with the analysis depth (ref. Section 6). In addition, we use various static analy-
ses and model transformations to reduce the set of pair-wise constraints added that are
redundant (ref. Section 7). For example, using the lockset analysis [10,9,14], we can re-
move constraints for all pairs other than (r2@1, w1@9), (r1@1, w2@9), (r2@10, w1@3),
(r2@10, w1@5) and (r2@10, w1@9). This is because other pairs are not reachable si-
multaneously in the mutually exclusive region, protected by the lock.

In our approach, a data race condition is detected, if there exists a witness trace
where a token passing event occurs between the pair (ri@k, wj@h) with shared ac-
cesses on the same variable, with at least one access being a write. In Figure 3(a), we
indicate the witness trace corresponding to the data race between source lines 3a and
7b (from Figure 1(c)) as a sequence of the token passing events highlighted in bold ar-
rows between the pairs (r1@1, w2@9) and (r2@10, w1@5). Note, the control state pair
(r2@10, w1@5) corresponds to simultaneous accesses of shared variable g1 with r2@10
being a pre-write access state. We obtain the witness trace by unrolling each model in
BMC up to depth 11. In a synchronously interleaved model (i.e., with wait-cycles), we
would have obtained the trace at an unrolled depth of 11 + 7 = 18. Note, we sum the
two depths, as thread P2 has to wait (self-loop) after context switch to P1.

For a thread model (example described in Section 8), we compare the reachability
graphs on the lazy and eager models, as shown in Figure 3(b), with and without using
model transformation such as path/loop balancing (PB) [21] and context-sensitive CSR
(CXT) [29]. Note, the width of the graph is proportional to |R(d)|. It is desirable that
the width is small for greater BMC simplification. We observe that path/loop balanc-
ing is more effective on our lazy models (i.e., without wait-cycles) as R(d) is reduced
significantly compared to eager models (i.e., with wait-cycles).

5 Lazy Modeling of Concurrent Systems

We present details of our modeling in Sections 5.1 and 5.2.

124 M.K. Ganai and A. Gupta

5.1 Sound Abstraction: Independent Thread Models

We perform source-to-source transformations to directly use a model builder (F-
Soft [28]) for sequential programs and obtain sound abstraction.

Token: We introduce a global Boolean variable, a token TK , to signify that the thread
with the token can execute a shared access operation and commit its current shared
state to be visible to the future transitions. Initially, only one thread, chosen non-
deterministically, is allowed to assert TK . Later, this token is passed, from one thread
to another, i.e., de-asserted in one thread and asserted by the other thread, respectively.

Logical Clock: To obtain a total ordering on token passing events, we use the concept
of logical clocks and timestamp [2]. We add a global clock variable CSi for each thread
Pi, so that the tuple (CS1 · · ·CSn) represents the logical clock. These variables are
initialized to 0. Whenever a token TK is acquired by a thread Pi, CSi is incremented
by 1 in Pi. The variable CSi keeps track of the number of occurrences of token passing
events wherein thread Pi acquires the token from another thread Pj , j �= i.

Race Detector: We add a race detector local Boolean variable RDi for each thread Pi.
This variable is set to 1 (initially, 0) whenever a shared variable is accessed in thread Pi

and written in another thread Pj while token is passed from Pj to Pi.

Localization: For each thread, we make the global variables localized by renaming.

Atomic Procedures: We add two atomic thread-specific procedures before and af-
ter every shared access, i.e., read sync and write sync, respectively. In the
read sync procedure, each localized shared and race detector variable get a non-
deterministic value, (ND), while in the write sync procedure only TK gets an ND
value.

Synchronization primitives: Operations lock(lk) and unlock(lk) are modeled
as atomic operations assume(lk = 1) and assume(lk = 0), respectively. To maintain
synchronization semantics, we only consider wait-free execution [15] where the acqui-
sition of the same lock twice is disallowed in a row without an intermediate unlock.
Note, this consideration is sufficient to find all data races.

5.2 Concurrency Constraints

Given independent abstract models, obtained as above, we add concurrency constraints
incrementally, and on-the-fly to each BMC instance, in addition to the transition con-
straints of the individual thread models and property constraints. The concurrency con-
straints capture inter- and intra- thread dependencies due to interleavings, and thereby,
eliminate additional behaviors in the models up to a bounded depth. Specifically, these
constraints comprise (a) pair-wise, i.e., inter-model constraints (shown in Table 1), (b)
single-threaded, i.e., intra-model constraints (shown in Table 2), and (c) global con-
straints (shown in Table 3). In the following, we use Ri(d), 0 ≤ d ≤ D, to denote the
set of control states reachable at depth d for each thread model LMi, for a given BMC
bound D. (Note, we compute CSR on each of the models LMi separately before start-
ing BMC.) Also, we use xk

i to denote the expression for the variable x in the unrolled
model LMi at depth k.

Efficient Modeling of Concurrent Systems in BMC 125

Table 1. Pair-wise concurrency constraints added in each BMC instance

P1. Read-Write Synchronization Enabling Constraint: For every pair of read sync control
state in LMi, ri ∈ Ri(k) and write sync control state in LMj , j �= i, wj ∈ Rj(h), we introduce
a Boolean variable RW kh

ij , and add the following enabling constraint:

RW kh
ij ⇐⇒ (Bk

ri
∧ ¬TKk

i ∧ Bh
wj

∧ TKh
j ∧ CSk

ii = CSh
ij) (1)

If RW kh
ij = 1, we say, the token passing condition is enabled.

P2. Read-Write Synchronization Exclusivity Constraint: Let RSk
i define the set {RW kh

ij |i �=
j, 0 ≤ h ≤ d} for a read sync control state of LMi at depth k. To allow at most one write sync
(from a different thread) to match with this read sync, we assign a unique id ah

j �= 0 to each
element of RSk

i . We add a new variable RCk
i for the read sync control state of LMi at depth

k, require that it takes value ah
j �= 0 iff RW kh

ij = 1. Similarly, we introduce a new variable
WCh

j for the write sync control state of LMj at depth h, and require that it takes value bk
i �= 0

iff RW kh
ij = 1. The constraints added are:

RW kh
ij ⇐⇒ (RCk

i = ah
j), ah

j �= 0 (2)

RW kh
ij ⇐⇒ (WCh

j = bk
i), bk

i �= 0 (3)

Thus, if RW kh
ij = 1, we require that both RCk

i �= 0 and WCh
j �= 0; and vice-versa.

P3. Read-Write Synchronization Update Constraint: For every RW kh
ij variable introduced,

we add the following update constraints:

RW kh
ij =⇒

m∧

p=1

gk+1
pi = gh

pj (4)

RW kh
ij =⇒ (TKk+1

i ∧ ¬TKh+1
j) (5)

RW kh
ij =⇒ (CSk+1

ii = CSk
ii + 1) ∧ (

n∧

q=1,q �=i

CSk+1
qi = CSh

qj) (6)

P4. Data Race Detection Property Constraint: We define two predicates will access and
just written statically, where will access(ri, g)= 1 iff shared variable g is accessed in the next
local control state reachable from ri, and just written(wi, g)= 1 iff shared variable g was written
in the previous local control state reachable to wi. We add the following race detection constraint
only if will access(ri, g)= 1 and just written(wj , g)= 1:

RW kh
ij =⇒ RDk+1

i (7)

We give the intuition and description for each of the following pair-wise (i.e., inter-
model) constraints P1-P4 added between unrolled models LMi and LMj at depths k
and h, respectively as shown in Table 1.

P1. Read-Write Synchronization Enabling Constraint: The constraints (Eqn 1)
capture the enabling of token passing condition. This happens exactly when: a)
thread model LMi is in read sync control state (i.e., pre-access shared state) at
depth k and does not hold the token , b) thread model LMj is in write sync control
state (i.e., post-access shared state) at depth h and holds the token, and c) thread

126 M.K. Ganai and A. Gupta

Table 2. Single threaded concurrency constraints added in each BMC instance

S1. No Sync Update Constraint: When none of the token passing events is triggered for a
read sync control state of LMi at depth k, we force the next state values to be unchanged for
each localized shared and race detector variable in LMi by adding:

RCk
i = 0 =⇒ (

m∧

p=1

gk+1
pi = gk

pi) ∧ (RDk+1
i = RDk

i) (8)

RCk
i = 0 =⇒ TKk+1

i = TKk
i (9)

RCk
i = 0 =⇒

n∧

q=1

CSk+1
qi = CSk

qi (10)

Similarly, for every write sync control state of LMj at depth h, we force the next state token
value to be unchanged by adding a similar constraint:

WCh
j = 0 =⇒ TKh+1

j = TKh
j (11)

S2. Lock/Unlock Synchronization Constraint: To model assume(lk = 0) in lock control
state li of LMi at depth k, and similarly, for unlock control state uli, we add

Bk
li =⇒ (¬lkk

i); Bk
uli =⇒ (lkk

i) (12)

S3. Write Commit Constraint: We make only a write operation commit its current shared state
to be visible to the future transitions by adding the following constraint in write sync control
state wj of LMj at depth h corresponding to write operation only, i.e.,

Bh
wj

=⇒ TKh
j (13)

S4. Single Control State Reachability Property Constraint: For checking reachability of a
local control state a ∈ Ci, we add constraint:

Bk
a =⇒ TKk

i (14)

Table 3. Global concurrency constraints added in each BMC instance

Single Token Constraint: Initially, exactly one thread model has the token. We add,

(
∨

1≤i≤n

TK0
i) ∧ (

∧

i�=j

TK0
i =⇒ ¬TK0

j) (15)

Multiple Race Detections: To check multiple data races incrementally, we add the following
blocking clause corresponding to the token passing events seen in the last witness trace.

¬(RW kh
ij ∧ · · · ∧ RW k′h′

i′j′) (16)

model LMj has the latest value of clock variable of LMi, and both threads agree
on that. Note, this constraint per se is not enough for token passing, and we require
the following exclusivity constraint as well.

Efficient Modeling of Concurrent Systems in BMC 127

P2. Read-Write Synchronization Exclusivity Constraint: Exclusivity constraints
(Eqn 2-3) ensure that for a chosen pair for token passing (ri@k, wj@h) with
i �= j, other pairs (ri@k, wj′@h′) with h �= h′ or j �= j′ and (rk′

i′ , wh
j)

with i �= i′ or k �= k′ are implied invalid. As shown in Figure 3(a), the pair
(r1@1, w2@3) excludes other pairs (r1@1, w2@6), (r1@1, w2@9), (r1@4, w2@3),
and (r1@7, w2@3) due to specific values of variables RC1

1 and WC3
2 chosen.

Note, Eqn 1, together with Eqn 2 and 3, define RW kh
ij . We say a token passing

event is triggered iff RW kh
ij = 1.

P3. Read-Write Synchronization Update Constraint: If the token passing event is
triggered, each localized shared variable of LMi at depth k gets the current state
value of the corresponding localized shared variable of LMj at depth h (Eqn 4),
the next state value of token of LMi is constrained to 1, while it is constrained to
0 for LMj , indicating a transfer of the token (Eqn 5), the next state value of the
clock variable of LMi is incremented by 1, while the remaining clock variables are
sync-ed with that of LMj (Eqn 6).

P4. Data Race or Pair-wise Reachability Property Constraints: A data race is de-
tected, i.e., RDk+1

i = 1 at thread model i at depth k+1 whenever for a shared vari-
able g read-write synchronization enabling constraint RW kh

ij holds (Eqn 7) with at
least one write access on g. To check whether control states a ∈ Ci (of LMi) and
b ∈ Cj (of LMj) are reachable simultaneously, we reduce the reachability prob-
lem to a token passing event detection, i.e., RW kh

ij = 1 by adding control states
read sync and write sync before and after control states a and b.

Similarly, we give the intuition and description for the following single-threaded
(i.e., intra-model) constraints S1-S4 added for each thread model LMi (LMj) at depth
k (h) as shown in Table 2.

S1. No Sync Update Constraint: The constraints (Eqn 8-11) keep the states of thread-
specific localized global variables, and newly introduced variables unchanged when
there is no token passing event (i.e. no context switching) occurs.

S2. Lock/Unlock Synchronization Constraint: The constraints (Eqn 12) assert/de-
assert the locking predicate variables in the respective lock/unlock states.

S3. Write Commit Constraint: The constraints (Eqn 13) make the write operation of
a thread visible to others by asserting the token.

S4. Single Control State Reachability Property Constraint: Like S3, the con-
straints (Eqn 14) make the reachability of a control state visible by asserting the
token.

As shown in Table 3, we add a single token constraint (Eqn 15) needed for total order
and blocking clauses (Eqn 16) to detect multiple data races.

6 Correctness and Size Complexity

Theorem 1 (Correctness) (A) The lazy modeling constraints allow only those traces
that respect the sequential consistency of memory model and synchronization semantics
up to the bound D, i.e., our modeling is complete. (B) Further, if there exists a witness

128 M.K. Ganai and A. Gupta

for a reachability property, such that the global trace length is ≤ n ·D and each local
trace length≤ D, there exists an equivalent trace allowed by our model corresponding
to the witness trace. In other words, our modeling is sound in that it does not miss any
witness up to these bounds.

Proof: Here is an outline. (Details upon request.)

– Completeness: Our modeling captures the requirements for sequential consistency
(a) program order: using the transition model of each thread, No Sync Update
Constraint (Eqn 9-11), and Write Commit Constraint (Eqn 13), (b) total order of
shared accesses: using logical clock along with Read-Write Synchronization (Eqn 5
and 6) and No Sync Update Constraint (Eqn 9 and 10), (c) read value rule: using
Read-Write Synchronization Constraint (Eqn 4), and No Sync Update Constraint
(Eqn 8), and (d) mutual exclusion rule: using Lock/Unlock Synchronization Con-
straint (Eqn 12).

– Soundness: We add pair-wise constraints for all pairs of shared accesses that are
statically reachable up to the bounded depth. Thus, we capture all possible inter-
leavings of shared accesses up to the bound, and hence, we cannot miss any witness
up to the bound. �

6.1 Size Complexity

We now discuss the size of constraints and variables incrementally added at each depth
d for n concurrent threads. We consider thread specific read sync and write sync
procedure calls, without inlining. This implies that at each unrolled depth k of LMi, at
most one read sync control state ri and at most one write sync control state wi belong
to the reachable set Ri(k). Thus, at depth d, ri (or wi) block is paired with at most
(n ·d) wj (or rj) blocks. Since there are n threads, we have at most (n2 ·d) pairs. Thus,
at depth d, the number of pair-wise constraints added, and variables introduced are
O(d), and number of non-pair constraints added is O(1). Overall, the size of constraints
and variables added up to depth d is O(d2). Thus, the concurrency constraints grow
quadratically with unrolling in the worst case.

For X memory accesses up to depth d, the size complexity can be shown to be
O(X2). To compare, the previous approaches [23, 24], incur a cubic cost, i.e., O(X3),
for a given memory model and a test program. �

7 Removal of Redundant Concurrency Constraints

We use following static analyses to reduce the number of context switches to consider;
thereby, remove redundant concurrency constraints corresponding to them:

– CFG transformation (PB): We use path/loop balancing transformations [21] on
each thread model independently to obtain a reduced set of statically reachable
blocks in CSR. This reduces concurrency and unrolled transition constraints.

– Lockset-based analysis (MTX): We determine statically pair-wise unreachability of
read sync and write sync control states using lockset [10, 9, 14] analysis. For such

Efficient Modeling of Concurrent Systems in BMC 129

pairs of read sync and write sync control states that are mutually exclusive (e.g.,
due to matching locks/unlocks), we do not add pair-wise constraints as the concur-
rency semantics forbids context-switching between those thread states.

– Context-sensitive CSR (CXT): We handle non-recursive procedures by creating a
single copy and using extra variables to encode the call/return sites. (Recursive pro-
cedures are inlined upto some user-chosen depth). However, not inlining a proce-
dure can cause false loops in the CFG of each thread, due to unmatched calls/returns
of a procedure. We avoid saturation in CSR due to false loops in CSR by determin-
ing reachability in a context-sensitive manner, i.e., by matching the call/return sites
for each procedure call. We observe in our experimental results that such analy-
sis gives a dramatically reduced set of reachable read sync and write sync control
states, and hence, a reduction in the set of pair-wise constraints added.

Discussion: The above mentioned static analysis techniques are not required to be pre-
cise as the imprecision does not affect completeness and soundness (Theorem 1) and
size complexity of the overall analysis. However, less precise (but conservative) static
analysis may result in less simplification and thereby poorer BMC performance. Fur-
thermore, we can utilize transactions and/or partial order reductions [8,14], to eliminate
some pair-wise concurrency constraints.

8 Experiments

We experimented on the Daisy file system [30], a public benchmark used to
evaluate and compare various concurrent verification techniques for concurrent threads
communicating with shared memory and locks/unlocks. It is a 1KLOC Java implemen-
tation of a representative file system, where each file is allocated a unique inode that
stores the file parameters, and a unique block which stores data. Each access to a file,
inode or block is guarded by a dedicated lock. Since a thread does not guarantee ex-
clusive operations on byte access, potential race conditions exist. This system has some
known data races. For our experiments, we used a C version of the code [14] with a
two-threaded concurrent system. Each thread model comprises 215 control states and
80 localized variables. Overall system model has 3 lock and 3 global variables.

We conducted our experiments on an SMT-based BMC framework similar to [21].
We used the yices-1.0 [31] SMT solver at the back-end. We compared our lazy
modeling with an eager modeling. In eager modeling approach, we add the pair-wise
constraints in the model itself between the states with shared access, that also have wait-
cycles. We applied BMC simplification using CSR as discussed in Section 2.3 for all
cases, referred to as the baseline strategy. We then combined this baseline strategy with
other static analysis techniques such as path balancing/loop CFG transformations (PB)
on CFG [21], context-sensitive analysis (CXT), and lockset analysis (MTX) [10, 9, 14].
We conducted controlled experiments with various combinations of these techniques.
Time taken for these static analyses, and for adding concurrency constraints are in-
significant compared to solving BMC instances. We combine these times with the solve
times, and do not report them separately.

130 M.K. Ganai and A. Gupta

8.1 Comparing BMC Results

We now compare the performance of SMT-based BMC on detecting multiple data races,
on both eager/lazy models, in various combinations of strategies. Note, multiple race
detection is an optional feature. We detect multiple data races incrementally, by adding
a blocking clause corresponding to the token passing events seen in the last witness trace
to the satisfiable BMC instance, and then continuing the search. We conducted our ex-
periments on a workstation with dual Intel 2.8 GHz Xeon Processors with 4GB physical
memory running Red Hat Linux 7.2, using a 6 hrs (≈20Ks) time limit and unroll bound
limit of 300 for each BMC run. The results are summarized in Table 4(a). Column 1,
shows the modeling approach (eager/lazy); Columns 2-6 show BMC results for various
combinations of static analysis methods. Each data point (d : t, m) corresponds to a
performance summary of BMC up to depth d, with t and m representing the cumulative
run time and memory used, respectively. Note, cumulative time includes the solve time
incurred in the previous depths for the same run. We show a selected few data points
for comparison. Specifically, Column 2 shows data for CSR with no PB and no CXT;
Column 3 shows data for CSR with PB and no CXT; Column 4 shows data for CSR
with PB and CXT; Column 5 shows data for CSR with PB, CXT and MTX; and Column
6 shows data for CSR with PB and MTX, but no CXT. For eager modeling, due to non-
inlining of procedure calls, we did not obtain any useful lockset information to reduce
the constraints statically, and therefore, results in the columns (CSR+PB+CXT+MTX)
and (CSR+PB+MTX) are the same as (CSR+PB+CXT) and (CSR+PB), respectively.
As an example, consider BMC at unroll depth 64. BMC on eager model with CSR times
out (TO) requiring 66 Mb, while on lazy model with CSR it takes 26s and 39Mb.

In general,PB andCXT help BMC go deeper in both the eager and lazy models. How-
ever, CXT has a pronounced effect on the BMC performance. We also observed that the
lockset analysis helps in improving the BMC performance, but not significantly. BMC
on eager model, in general, does not go very deep, and times out in all cases with-
out detecting any data races. In contrast, BMC on lazy model with (CSR+PB+CXT)
or (CSR+PB+CXT+MTX) is able to find 50 data races in a single BMC run. Note,
less precise static analysis CSR and CSR+PB show poorer performance compared to
CSR+PB+CXT and CSR+PB+CXT+MTX.

In Table 4(b), we provide details of BMC performance on lazy models on the first
five data races using CSR+PB+CXT+MTX. Column 1 shows the data races listed in the
order of detection; Columns 2-4 show the BMC depth, cumulative time, and memory
used, respectively. Column 5 shows the context-switches in the trace, each denoted as
(Pi : ki, li) → (Pj : kj , lj) where model Pi executes uninterrupted from depth ki to
li, and then switches the context to Pj at depth kj . The Daisy example intentionally
included many data races as a benchmark. Each race reported here corresponds to a
unique set of context-switches in the witness trace. As an example, the first data race is
detected at depth 143 taking 12s and 10Mb. There are 3 context switches: a P1 run from
depth 0 to 127, followed by a P2 run from depth 0 to 127, followed by another P1 run
from 128 to 142, followed by a data race detection when P2 accesses the same variable
at depth 128. Note, the length of the trace is 271(= 143 + 128).

Efficient Modeling of Concurrent Systems in BMC 131

8.2 Comparison with Related Work

In a related effort [14], two write-write data races were detected for the same bench-
mark, i.e. Daisy file system [30], using 1283s and 122Mb, and 5925s and
902Mb, respectively. Note, our eager modeling (used in experiments) differs from them
mainly in the back-end solver, i.e., SMT vs SAT, and in use of static reduction methods,
which was the crux of their approach. We believe that the orders of magnitude improve-
ment in BMC performance (as reported in Table 4(b)), are attributed mainly to our lazy
modeling paradigm that facilitates dramatic size-reduction of BMC instances.

In contrast to a closely related work TCMBC [15], we do not bound the number
of context switches. Further, we add constraints lazily and incrementally during BMC
unrolling. TCBMC, built over CBMC [32], translates concurrent C threads into static
single assignment (SSA) form, and adds constraints for a bounded number of context-
switches for a bounded depth. TCMBC approach requires full inlining of functions and
unwinding of loops like CBMC. This CBMC-based approach, therefore, is not scalable
to large piece of code or code with reactive behavior, as shown previously [28].

We also contrast our work with [23, 24], where weaker memory models are consid-
ered. However, these approaches only check given test programs. Further, the number
of concurrency constraints they add are cubic [24] in the number of shared accesses,
while we add a quadratic number of constraints.

Table 4. SMT-based BMC (a) Comparison Results (b) Sample Witness Traces

(a) Comparing SMT-based BMC (b) First 5 Data Race Traces using
on Lazy/Eager Models CSR+PB+CXT+MTX on lazy model

Static Analysis Strategies
Model CSR CSR+PB CSR+PB CSR+PB CSR+PB

(1) (2) +CXT(3) +CXT+MTX(4) +MTX(5)
d: t, m with d ≡BMC Depth, t ≡Cum. Time(s), m ≡Mem(Mb)

Eager 64: TO,66 64: 132,21 64: 10,14 same as same as
95: TO,59 95: 2K,31 (3) (2)

124: TO,49
race? N N N N N

Lazy 64: 26,39 64: 6,10 64: 2,6 64: 1,6 64: 3,10
73: 8K,101 95: 35,10 95: 5,8 95: 4,8 95: 17,28
Yices 118: TO,114 118: 8,11 118: 8,11 118: 15K,108

124: 16, 10 124: 9, 10 119: TO,112
aborted 287: 2.7K,34 287: 2.4K,32

race? N N 50 races 50 races N

Note: N≡No Race Detected, *≡Yices Aborted, TO≡Time Out

BMC TimeMem (Pi : ki, li)
→ (Pj : kj , lj)

#depth sec Mb Pi executes from depths
ki to li uninterrupted
and context-switches

to Pj at depth kj .
(1: 0,127)→(2: 0,127)→1 143 12 10
(1: 128,142)→(2: 128,-)
(1: 0,127)→(2: 0,127)→2 174 25 13
(1: 128,173)→(2: 128,-)

(1: 0,14)→(2: 0,179)3 180 30 15 →(1: 15,-)
(1:0,127)→(2:0,158)→

4 211 96 17 (1:128,158)→(2:159,210)
→(1:159,-)

(1: 0, 127)→(2: 0,210)5 211 99 18 →(1: 128,-)

9 Conclusions and Future Work

We described a novel lazy modeling paradigm for shared memory multi-threaded con-
current systems, that is more suitable for BMC compared to synchronous modeling of
interleaving semantics proposed previously. Such direct modeling of concurrency se-
mantics in BMC is geared toward reducing the size of BMC instances, and thereby, im-
proving the performance of BMC for deeper analysis. We add concurrency constraints
lazily, incrementally and on-the-fly during BMC unrolling that preserve the concur-
rency semantics up to the bounded depth. By avoiding wait-cycles, our modeling allows

132 M.K. Ganai and A. Gupta

greater scope for reduction in size of a BMC instance. In addition, we use various static
analyses to reduce the number of context-switches to consider, which further reduces
the size of the constraints. We demonstrated the efficacy of our approach on a complex
example. In future, we would like to combine partial-order reduction methods [8, 14],
and add deadlock detection.

Acknowledgement

We thank Vineet Kahlon for helpful discussions and providing the C version of the
Daisy benchmark.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. IEEE Com-
puter, Los Alamitos (1996)

2. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM (1978)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579. Springer, Heidelberg (1999)

4. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)
5. Ramalingam, G.: Context sensitive synchronization sensitive analysis is undecidable. In:

ACM Transactions on Programming Languages and Systems (2000)
6. Godefroid, P.: Model checking for programming languages using verisoft. In: Proc. of POPL

(1997)
7. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: ZING: Exploiting program struc-

ture for model checking concurrent software. In: Gardner, P., Yoshida, N. (eds.) CONCUR
2004. LNCS, vol. 3170, pp. 1–15. Springer, Heidelberg (2004)

8. Godefroid, P.: Partial-order Methods for the Verification of Concurrent Systems: An Ap-
proach to the State-explosion Problem. PhD thesis (1995)

9. Flanagan, C., Qadeer, S.: Transactions for software model checking. In: Proc. of TACAS
(2003)

10. Stoller, S.D.: Model-checking multi-threaded distributed Java programs. Journal on STTT
(2002)

11. Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction. In: Garavel,
H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 489–504. Springer, Heidelberg
(2003)

12. Levin, V., Palmer, R., Qadeer, S., Rajamani, S.K.: Sound transaction-based reduction without
cycle detection. In: Proc. of SPIN Workshop (2003)

13. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction
in symbolic state space exploration. In: Proc. of CAV, pp. 340–351 (1997)

14. Kahlon, V., Gupta, A., Sinha, N.: Symbolic model checking of concurrent programs using
partial orders and on-the-fly transactions. In: Proc. of CAV (2006)

15. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs. In: Proc. of
CAV (2005)

16. Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. Electronic Notes
Theoretical Computer Science (2003)

17. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidel-
berg (2005)

Efficient Modeling of Concurrent Systems in BMC 133

18. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided Underapproximation-
Widening for Multi-process Sytems. In: Proc. of POPL (2005)

19. Cook, B., Kroening, D., Sharygina, N.: Symbolic Model Checking for Asynchronous
Boolean Programs. In: Proc. of SPIN Workshop (2005)

20. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

21. Ganai, M.K., Gupta, A.: Accelerating high-level bounded model checking. In: Proc. of IC-
CAD (2006)

22. Adve, S.V., Hill, M.D., Miller, B.P., Netzer, R.H.B.: Detecting data races on weak memory
systems. In: Proc. of ISCA (1991)

23. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-model-sensitive data race analysis.
In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 30–45.
Springer, Heidelberg (2004)

24. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: Checking consistency of concurrent
data types on relaxed memory models. In: Proc. of PLDI (2007)

25. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for axiomatic
and executable specifications of memory consistency models. In: Proc. of IPDPS (2004)

26. Voung, J.W., Jhala, R., Lerner, S.: Relay: static race detection on millions of lines of code.
In: ESEC/SIGSOFT FSE, pp. 205–214 (2007)

27. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In: Proc. of
POPL, pp. 327–338 (2007)

28. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based Bounded Model
Checking for Software Verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313. Springer, Heidelberg (2006)

29. Ganai, M.K., Gupta, A.: Completeness in SMT-based BMC for software programs. In: Proc.
of DATE (2008)

30. Joint CAV/ISSTA Special Event. Specification, Verification, and Testing of Concurrent Soft-
ware (2004),
http://research.microsoft.com/∼quadeer/cav-issta.htm

31. SRI. Yices: An SMT solver, http://fm.csl.sri.com/yices
32. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and verilog programs using

bounded model checking. In: Proc. of DAC (2003)

http://research.microsoft.com/~quadeer/cav-issta.htm
http://fm.csl.sri.com/yices

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 134–143, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Tackling Large Verification Problems with the
Swarm Tool*

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce

Laboratory for Reliable Software (LaRS)
Jet Propulsion Laboratory, California Institute of Technology

Abstract. The range of verification problems that can be solved with logic
model checking tools has increased significantly in the last few decades. This
increase in capability is based on algorithmic advances, but in no small measure
it is also made possible by increases in processing speed and main memory
sizes on standard desktop systems. For the time being, though, the increase in
CPU speeds has mostly ended as chip-makers are redirecting their efforts to the
development of multi-core systems. In the coming years we can expect systems
with very large memory sizes, and increasing numbers of CPU cores, but with
each core running at a relatively low speed. We will discuss the implications of
this important trend, and describe how we can leverage these developments
with new tools.

1 Introduction

The primary resources in most software applications are time and space. It is often
possible to make an algorithm faster by using more memory, or to reduce its memory
use by allowing the run time to grow. In the design of SPIN, a reduction of the run
time requirements has almost always taken precedence.

For an exhaustive verification, the run time requirements of SPIN are bounded by
both the size of the reachable state space and by the size of available memory. If M
bytes of memory are available, each state requires V bytes of storage, and the verifier
on average records S new states per second, then a run can last no longer than
M/(S*V) seconds. If, for example, M is 64 MB, V is 64 bytes, and S is 104 states per
second, the maximum runtime would be 102 seconds. If there are more than 106 reach-
able states, the search will remain incomplete – being limited by the size of memory.

The verification speed depends primarily on the average size of the state descrip-
tor, which is typically in the range of 102 to 103 bytes. On a system running at 2 or 3
GHz the processing speed is normally in the range of 105 to 5.105 states per second.
This means that in about one hour, the model checker can explore 108 to 109 states,
provided sufficient memory is available to store them. This means that some 1011

* The research described in this paper was carried out at the Jet Propulsion Laboratory, Califor-

nia Institute of Technology, under a contract with the National Aeronautics and Space
Administration. The work was supported in part by NASA’s Exploration Technology Devel-
opment Program (ETDP) on Reliable Software Engineering.

 Tackling Large Verification Problems with the Swarm Tool 135

bytes, or 100 GB, can be used up per hour of runtime.1 On an 8 GB system, that
means that the model checker can (in exhaustive storage mode) normally run for no
more than about 5 minutes. If we switch to a 64 GB system running at the same
clock-speed, the worst-case runtime increases to 40 minutes.

An interesting effect occurs if we switch from exhaustive verification mode to bit-
state mode, where we can achieve a much higher coverage of large state spaces by
using less than a byte of memory per state stored [H87]. The exact number of bytes
stored per state is difficult to determine accurately in this case. The current version of
SPIN by default uses three different hash-functions, setting between one and three
new bit-positions for each state explored. We will assume conservatively here that
each state in this mode consumes 0.5 bytes of memory, and that the speed of the
model checker is approximately 108 states per hour. Under these assumptions, the
model checker will consume maximally 108 * 0.5 bytes of memory per hour of run
time, or roughly 50 MB. To use up 8 GB will now take about a week (6.8 days) of
non-stop computation. In return, we cover significantly more states, but both time and
space should be considered limited resources, so the greater number of states is not
always practically achievable. To make the point more clearly, if we increase the
available memory size to 64 GB, a bitstate search could consume close to two months
of computation, which is clearly no longer a feasible strategy, no matter how many
states are explored in the process.

We are therefore faced with a dilemma. The applications that we are trying to ver-
ify with model checkers are increasing in size, especially as we are developing meth-
ods to apply logic model checkers directly to implementation level code [H00, HJ04].
As state descriptors grow in size from tens of bytes to tens of kilobytes, processing
speed drops and is no longer offset by continued CPU clock-speed increases. For very
large applications, a bitstate search is typically the only feasible option as it can in-
crease the problem coverage (i.e., the number of reachable states explored) by orders
of magnitude. Exhaustive coverage for these applications is generally prohibitively
expensive, given the enormous size of both the state descriptors and the state spaces,
no matter which algorithm is used. In these cases we have to find ways to perform the
best achievable verification. Technically, the right solution in these cases is always to
apply strong abstraction techniques to reduce the problem size as much as possible.
We will assume in the remainder of this paper that the best abstractions have already
been applied and that the resulting state space sizes still far exceed the resource limits
in time and/or memory.

2 Leveraging Search Diversity

To focus the discussion, we will assume that there is always an upper bound on the
time that is available for a verification run, especially for large problem sizes. We will
assume that this bound is one hour. With a fixed exploration rate this means that we
cannot use more than a few Gigabytes of memory in exhaustive verification and no
more than about 50 to 500 MB in bitstate exploration. Given that for very large verifi-
cation problems we have to accept that the search for errors within a specific time

1 Smaller state descriptors normally correlate with higher processing speeds.

136 G.J. Holzmann, R. Joshi, and A. Groce

constraint will generally be incomplete, it is important that we do not expend all our
resources on a single strategy. Within the limited time available, we should approach
the search problem from a number of different angles – each with a different chance
of revealing errors.

A good strategy is to leverage both parallelism and search diversity. The types of
applications that then become most promising fall in the category of “embarrassingly
parallel” algorithms.

To illustrate our approach, we will use a simple model that can generate a very
large state space, where we can easily identify every reachable state and predict when
in a standard depth-first search each specific state will be generated. The example is
shown in Figure 1.

byte pos = 0;

int val = 0;

int flag = 1;

active proctype word()

{

end: do

 :: d_step { pos < 32 -> /* leave bit 0 */ flag = flag << 1; pos++ }

 :: d_step { pos < 32 -> val = val | flag; flag = flag << 1; pos++ }

 od

}

never { do :: assert(val != N) od } /* check if number N is reached */

Fig. 1. Model to generate all 32-bit values, to illustrate the benefits of search diversification

The model executes a loop with two options, from which the search engine will non-
deterministically select one at each step. Each option will advance an index into a 32-
bit integer word named val from the least significant bit (at position one) to the most
significant bit (at position 32). The first option leaves the bit pointed to set to its initial
value of zero, and merely advances the index. The second option sets the bit pointed
at to one. Clearly, there will be 232 (over 4 billion) possible assignments to val. Each
state descriptor is quite small, at 24 bytes, but storing all states exhaustively would
still require over 100 GB.

If we perform the state space exploration on a machine with no more than 2 GB, an
exhaustive search cannot reach more than 2% of the state space. A bitstate search on
the other hand could in principle store all states, but only under ideal conditions. For
this model, with a very small state descriptor, we reach a processing speed of close to
2 million states per second, on a standard 2.3 GHz system. We will, however, artifi-
cially limit the amount of memory that we make available for the bitstate hash array
to 64 MB and study what we can achieve in terms of state coverage by exploiting
parallelism and search diversification techniques. In terms of SPIN options, this means
the selection of a pan runtime flag of maximally –w29. In practice this means that for
this example only about 148 million states are reached in bitstate mode, or no more
than 3.5% of the total state space.

 Tackling Large Verification Problems with the Swarm Tool 137

For this example it is also easy to check if a specific 32-bit value is reached in
SPIN’s exploration, by defining the corresponding value for N when the model is gen-
erated. For instance, checking if the value negative one is reached in the maximal
bitstate search can be done as follows:

$ spin –DN=-1 –a model.pml
$ cc –DMEMLIM=2000 –DSAFETY –o pan pan.c
$./pan –w29

This particular search fails to produce a match. It is easy to understand why that is.
Note that the value negative one is represented in two’s complement as a series of all
one bits, which in the standard depth-first search is the last number that would be
generated by the verifier. Performing the same search for the value positive one will
produce an almost immediate match, for the same reason. If we reverse the order of
the two options in the model of Figure 1, the opposite effect would occur: the search
for negative one would complete quickly and the search for positive one would fail.

If the number to be matched is randomly chosen, we could not devise a search
strategy that can optimize our chances of matching it, which is more representative of
a real search problem. After all, if we know in advance where the error might be, we
would not need a model checker to find it.

In the experiments that we will describe we will use a list of 100 randomly gener-
ated numbers, and compare different methods for matching as many of them as possi-
ble. If the random number generator behaves properly, the random numbers will be
distributed evenly over the entire state space of over 4 billion reachable states. Statis-
tically, the best we could expect to do in any one run would be to uncover no more
than 3 or 4 of those states (given that with runtime flag –w29 we can explore at most
3.5% of the reachable state space). We will see that with a diversified search strategy,
we can do significantly better and identify 49% of the randomly generated states. We
will also show that even when using only 4 MB (a tiny fraction of the 100 GB that
would be required to store the full state space) we can already identify 10% of the
target numbers.

3 Algorithms

To make our method work we have to be able to use as many different search meth-
ods as there are processing cores available to us. If each search is setup to use only a
small fraction of the total memory that is available on our system, we can run all
searches in parallel. In the description that follows we describe a number of different
search algorithms. Several of these algorithms can be modified to form any number of
additional searches, each of which able to search a different part of the state space.
The base algorithms we use can be described as follows.

1. (dfs) The first method is the standard depth-first search that is the
default for all SPIN verifications.

2. (dfs_r)The next method reverses the order in which a list of non-
deterministic choices within a process is explored, using the com-
piler directive –D_TREVERSE (new in SPIN version 5.1.5).

138 G.J. Holzmann, R. Joshi, and A. Groce

3. (r_dfs) The next method uses a search randomization strategy on
the order in which a list of transitions is explored, using the exist-
ing compiler directive –DRANDOMIZE (first introduced in SPIN
version 4.2.2). With this method the verifier will randomly select a
starting point in the transition list, and start checking transitions
for their executability in round-robin order from the point that was
randomly selected.

4. (pick) The next method uses a user defined selection method, us-
ing embedded C code, to permute the transitions in a list.2

5. The last method reverses the order in which process interleavings
are explored, using the compiler directive –DREVERSE (introduced
in SPIN version 5.1.4).

Because our example uses just a single process, we will not use the last variation of
the search. Alternative methods for modifying process scheduling decisions during a
search can be found in [MQ08].

Algorithms 3 and 4 can be used to define a range of search options, using different
seeds for the random number generator. To illustrate this, we will use two versions of
algorithm 3, called r_dfs1 and r_dfs2. Each algorithm from the set can be used in a
series of runs. In our tests we repeated each run 100 times, once for each number from
the list of 100 target numbers to match. We then repeat each of these 100 runs 24
times, while varying the size of the hash-array used from our limit value of –w29 (64
MB) down to a minimum of –w6 (64 bytes). This is an application of iterative search
refinement, as first discussed in [HS00].

About 2,000 runs from this series of experiments, for hash array sizes from –w6 up
to and including –w23 take less than a second of runtime each, so despite the large
number of runs, they can be completed very quickly. For the larger hash array sizes
(2MB and up) the runtime and the number of states covered becomes more notable,
with the longest runs taken 84 seconds each on a 2.4 GHz system. All 24 runs com-
bined take no more than about 3 minutes of real time when run sequentially, which
means that all 2,400 runs can be completed in about 5 hours on a single CPU core, or
in about 37 minutes total on the 8-core machine that was used for these experiments.
The results are shown in Figure 2.

When used separately, and performing one verification run alone, none of the
search methods identify more than about 9% of the target values set for this experi-
ment. If we look at the cumulative effectiveness of the iterative search refinement
method, using 24 runs of a each algorithm and increasing the size of the hash array
step by step, this coverage increases, with the best performing search method (r_dfs2)
identifying 15% of all targets. The performance of all five search strategies combined
in our proposed diversified multi-core search strategy increases the coverage to the
identification of 49% of all targets.

The top curve in Figure 2 shows the cumulative number of matches (out of 100) as
the memory arena is increased from 64 bytes (-w6) to 64 MB (-w29). The other
curves show the performance of the individual search algorithms.

2 Available from the authors.

 Tackling Large Verification Problems with the Swarm Tool 139

1

10

100

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

dfs r_dfs1 r_dfs2 dfs_r pick total matched

Fig. 2. Results of 2,400 Verification Runs for the Model in Figure 1 (logscale)

Each different search method identifies a different set of targets, thus boosting the
overall effectiveness of the use of all methods combined. Adding more variations of
the searches could increase the problem coverage still further. It is evident from these
data that the performance of the diversified multi-core search is significantly better
than any one search method in isolation.

The diversified multi-core search promises to be a very valuable addition to the
range of techniques that we can use to tackle very large software verification prob-
lems. It builds directly on the availability of systems with increasing numbers of CPU
cores and rapidly growing memory sizes, that we can expect in the coming years and
perhaps decades. There may also be a direct application of this strategy of swarm
verification in grid computing, using large numbers of standard networked computers.
In this paper, though, we focus on the application to multi-core systems only.

4 The Swarm Tool

Based on the observations above, we developed a tool that allows us to leverage the
effect of search diversification on multi-core machines. The Swarm tool, written in
about 500 lines of C, can generate a large series of parallel verification runs under
precise user-defined constraints of time and memory. The tool takes parameters that

140 G.J. Holzmann, R. Joshi, and A. Groce

define a time-constraint, the number of available CPUs, and the maximum amount of
memory that is available.3

Swarm first calculates how many states could maximally be searched within the
time allowed, and then sets up a series of bitstate runs. By limiting the hash arena in a
bitstate run, Swarm controls what the maximal time for each run will be. Parallelism
is used to explore searches with different search strategies to provide diversity. The
commands that are generated include standard, randomized, and reverse depth-first
search orders, varying depth-limits, and using a varying numbers of hash-functions
per run. In a relatively small amount of time, hundreds of different searches can be
performed, each different, probing different parts of an oversized state space.

A typical command line invocation of the Swarm tool is as follows:

$ swarm –c4 –m16G –t1 –f model.pml > script
swarm: 33 runs, avg time per cpu 3593.8 sec

In this case we specify that we want to use 4 CPU cores for the verifications, and have
up to 16 GB of memory available for these runs. The –t parameter sets the time limit
for all runs combined to one hour. Swarm writes the verification script onto the stan-
dard output, which can then be written into a script file. Executing the script performs
the verification.

Application. An example of a large problem that cannot be handled with standard
search methods is a SPIN model of an experimental Fleet processor architecture. The
details of the design itself are not of interest to us here, but the verifiability of the
model is.4 One version of this model has a known assertion violation that can be trig-
gered through a manually guided simulation in about 350 steps.

The model is over one thousand lines of PROMELA.5 Each system state is 1,440
bytes. An attempt to perform a full verification on a machine with 32 GB of memory
runs at roughly 105 states per second, and exhausts memory in 195 seconds without
reporting the error. At this point the search explored 23.4 million states, corresponding
to an unknowable fraction of the reachable state space. A search using -DCOLLAPSE
compression (a lossless state compression mode) reaches 327.6 million states before
running out of memory after 3,320 seconds. A run with hash-compact (a stronger, but
not lossless, form of compression) runs out of memory after 1,910 seconds and in-
creases the coverage to 537 million states. A bitstate run, using all 32 GB of memory,
runs for 34 days, and explores over 1011 system states. None of these search attempts
succeed in locating the assertion failure.

The full reachable state space for this problem is likely to be orders of magnitude
larger than what can be searched or stored by any verification method. The bitstate
run can be performed in parallel on 8 CPUs, shrinking the run time from 34 days to
about 5 days [HB07], but without change in result. An alternative would be to run the
verification with –DMA compression, which is lossless and often extremely frugal in
memory use. Such a run could in principle be able to complete the verification and
reveal the error, but it would likely take at least a year of computation to do so.

3 For a manual page see: http://spinroot.com/swarm/
4 The Spin model of the Fleet Architecture Design was built by Rhishikesh Limaye and Nara-

yan Sundaram under the guidance of Sanjit Sehia from UC Berkeley.
5 The specification language of the SPIN model checker.

 Tackling Large Verification Problems with the Swarm Tool 141

A Swarm run for this application is quickly setup. Swarm generates 74 small jobs
in 8 scripts that can be executed in parallel on the 32 GB machine, when given a time
limit of one hour (the default). Executing the script finds the assertion violation
within a few seconds. In this case by virtue of the inclusion of the reversed depth-first
search. The assertion violation, as it turns out, normally happens towards the end of
the standard depth-first order– which means that it is encountered near the very be-
ginning of the search if the depth-first search order is reversed.

For a different test of the performance of Swarm we also studied a series of large
verification models from our benchmark set, most of which were also used in [HB07].
EO1 is a verification model of the autonomous planning software used on NASA’s
Earth Observer-1 mission [C05]. The Fleet architecture model was discussed above.
DEOS is a model of an operating system kernel developed at Honeywell Laboratories,
that was also discussed in [P05]. Gurdag is a model of an ad hoc network structure
with five nodes, created by a SPIN user at a commercial company. CP is a large model
of a telephone switch, extracted from C source code with the Modex tool. DS1 is a
large verification model with over 10,000 lines of embedded C code taken from
NASA’s Deep Space 1 mission, as described in [G02]. NVDS is a verification model
of a data storage module developed at JPL in 2006, with about 6,000 lines of embed-
ded C code, and NVFS is non-volatile flash file system design for use on an upcom-
ing space mission, with about 10,000 lines of embedded C.

For each of these models we first counted the number of local states in the auto-
mata that SPIN generates for the model checking process. This is done by inspecting
the output of command “pan –d.” Next, we measured the number of these local states
that is reported as unreached at the end of a standard depth-first search with a bitstate
hash-array of 64 MB (using runtime flag –w29, as before). Next, we used the Swarm
tool to generate a verification script for up to 6 CPUs and 1 hour of runtime. We then
measured how many of the local states remained unreached in all runs.

Table 1. Swarm Coverage Improvement for Eight Large Verification Models

Number of Control States

Unreached Control States

Percent of Control States

Reached

Verification

Model Total

standard dfs dfs + swarm standard dfs dfs + swarm

EO1 3915 3597 656 8 83

Fleet 171 34 16 80 91

DEOS 2917 1989 84 32 97

Gurdag 1461 853 0 41 100

CP 1848 1332 0 28 100

DS1 133 54 0 59 100

NVDS 296 95 0 68 100

NVFS 3623 1529 0 58 100

The last two columns of Table 1 show the percentage of control states reached, re-
spectively in the original depth-first search using a 64 MB hash-array, and in that
search plus all Swarm verification runs. In all cases the coverage increases notably.
For the EO1 model performance increases from 8% to 83%. In the next two cases,
coverage increases to over 90%. In the last five large applications we see coverage by
this metric reach 100% percent of the control states. It should be noted that this last
result does not mean that the full reachable state space was explored. For the models

142 G.J. Holzmann, R. Joshi, and A. Groce

considered here achieving the latter would be well beyond our resource limitations,
which is precisely why we selected them as candidates for the evaluation of Swarm
verification.

All measurements were performed on a 2.3 GHz eight-core desktop system with 32
GB of main memory, of which no single run consumed more than 64 MB in these
tests. The state vector size for the models ranges from a180 (NVDS) to 3426 (DS1)
bytes of memory. The number of Swarm jobs that can be executed within our 1 hour
limit ranged from 86 (EO1) to 516 (NVDS).

Swarm unexpectedly succeeded in uncovering previously unknown errors in both
the CP model and the NVFS applications. The NVFS application is relatively new,
but the CP verification model was first subjected to thorough verification eight years
ago, and has since been used in numerous tests without revealing any errors.

5 Conclusion

It is often assumed that the best way to tackle large verification problems is to use all
available memory in a maximal search, possibly using multi-core algorithms, e.g.,
[HB07], to reduce the runtime. As memory sizes grow, most search modes that would
allow us to explore very large numbers of states take far too much time (e.g., months)
to remain of practical value. In this paper we have introduced a new approach that
allows us to perform verifications within strict time bounds (e.g., 1 hour), while fully
leveraging multi-core capabilities. The Swarm tool uses parallelism and search diver-
sity to optimize coverage.

We have measured the effectiveness of Swarm in several different ways. In each
case we could determine that the new approach could defeat the standard method of a
single depth- or breadth first search by a notable margin, both by dramatically reduc-
ing runtime and by increasing coverage.

A similar approach to the verification problem was explored in [D07], where it was
applied to the verification of Java code with the Pathfinder tool, though without con-
sidering run-time constraints.

The use of embarrassingly parallel approaches, like Swarm, becomes increasingly
attractive as the number of processing cores and the amount of memory on desktop
systems continues to increase rapidly.

An often underestimated aspect of new techniques is the amount of training that
will be required to fully leverage them. This is perhaps one of the stronger points in
favor of the Swarm tool. It would be hard to argue that the use of Swarm requires
more training than a cursory reading of the manual page.

The swarm tool has meanwhile proven to be so remarkably effective that it has be-
come the default interface to the Spin tool that we use for all large verification efforts
in our group.

Acknowledgements

The authors are grateful to Sanjit Seshia, Rhishikesh Limaye, Narayan Sundaram, for pro-
viding access to and insight in the Fleet Architecture models, and to Madan Musuvathi

 Tackling Large Verification Problems with the Swarm Tool 143

and Klaus Havelund for inspiring discussions about search strategies. Doron Peled pro-
posed the introduction of the –DRANDOMIZE option in SPIN version 4.2.2.

References

[C05] Chien, S., Sherwood, R., Tran, D., et al.: Using Autonomy Flight Software to Improve
Science Return on Earth Observing One (EO1). Journal of Aerospace Computing, Informa-
tion, and Communication (April 2005)

[D07] Dwyer, M.B., Elbaum, S.G., et al.: Parallel Randomized State-Space Search. In: Proc.
ICSE 2007, pp. 3–12 (2007)

[M69] Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8)
(April 9, 1965)

[G02] Gluck, P.R., Holzmann, G.J.: Using Spin Model Checking for Flight Software Verifica-
tion. In: Proc. 2002 Aerospace Conf., March 2002. IEEE, Big Sky (2002)

[H87] Holzmann, G.J.: On limits and possibilities of automated protocol analysis. In: Rudin,
H., West, C. (eds.) Proc. 6th Int. Conf. on Protocol Specification, Testing, and Verification,
INWG IFIP, Zurich, Switzerland (June 1987)

[H00] Holzmann, G.J.: Logic verification of ANSI-C Code with Spin. In: Havelund, K., Penix,
J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 131–147. Springer, Heidelberg
(2000)

[HS00] Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs
Technical Journal 5(2), 72–87 (2000)

[HJ04] Holzmann, G.J., Joshi, R.: Model-driven software verification. In: Graf, S., Mounier, L.
(eds.) SPIN 2004. LNCS, vol. 2989, pp. 76–91. Springer, Heidelberg (2004)

[HB07] Holzmann, G.J., Bosnacki, D.: The design of a multi-core extension to the Spin model
checker. IEEE Trans. On Software Engineering 33(10), 659–674 (2007)

[MQ08] Musuvathi, M., Qadeer, S.: Fair stateless model checking. In: Proc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI), Tucson, AZ, June 7-
13 (2008)

[P05] Penix, J., Visser, W., Pasareanu, C., Engstrom, E., Larson, A., Weininger, N.: Verifying
Time Partitioning in the DEOS Scheduling Kernel. Formal Methods in Systems Design
Journal 26(2) (2005)

Formal Verification of a Flash Memory Device Driver –
An Experience Report�

Moonzoo Kim1, Yunja Choi2, Yunho Kim1, and Hotae Kim3

1 CS Dept. KAIST, Daejeon, South Korea
moonzoo@cs.kaist.ac.kr
kimyunho@kaist.ac.kr

2 School of EECS, Kyungpook National University, Daegu, South Korea
yuchoi76@knu.ac.kr

3 Samsung Electronics, Suwon, South Korea
hotae.kim@samsung.com

Abstract. Flash memory has become virtually indispensable in most mobile de-
vices. In order for mobile devices to operate successfully, it is essential that flash
memory be controlled correctly through the device driver software. However, as
is typical for embedded software, conventional testing methods often fail to de-
tect hidden flaws in the complex device driver software. This deficiency incurs
significant development and operation overhead to the manufacturers.

In order to compensate for the weaknesses of conventional testing, we have
applied NuSMV, Spin, and CBMC to verify the correctness of a multi-sector read
operation of the Samsung OneNANDTM flash device driver and studied their
relative strengths and weaknesses empirically. Through this project, we verified
the correctness of the multi-sector read operation on a small scale. The results
demonstrate the feasibility of using model checking techniques to verify the con-
trol algorithm of a device driver in an industrial setting.

1 Introduction

Flash memory has become a crucial component for mobile devices. Accordingly, in or-
der for mobile devices to operate successfully, it is essential that the device driver of the
flash memory operates correctly. However, as is typical of embedded software, conven-
tional testing methods often fail to detect hidden bugs in the device driver software for
flash memory, since it is infeasible to test all possible scenarios generated from the com-
plex control structure of the device driver. This deficiency incurs significant overhead to
the manufacturers. For example, Samsung spent more project time and resources to test
flash software than in developing the software. Limitations of conventional testing were
manifest in the development of flash software for Samsung OneNANDTM flash mem-
ory [1]. For example, a multi-sector read function was added to the flash software to
optimize the reading speed (see Section 3). However, this function caused numerous er-
rors in spite of extensive testing and debugging efforts, to the extent that the developers
seriously considered removing the feature.

� This work was supported by KAIST Institute for Information Technology Convergence and
Samsung Electronics.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 144–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formal Verification of a Flash Memory Device Driver 145

In this project, we have verified the correctness of a multi-sector read (MSR) opera-
tion of the Samsung OneNAND flash device driver by using NuSMV [6], Spin [14], and
CBMC [10] in an exhaustive analysis of a small size flash. These three model checkers
employ three different techniques, namely, BDD-based model checking, explicit model
checking, and SAT-based bounded model checking.

The contributions of this project are three-folds. First, this project addresses an in-
teresting industrial problem to verify the functional correctness of a controller with
a large data structure. To date, there have been studies on verification of device
drivers [13,22,25] and handling of large data structures such as arrays and linked
lists [4,8,24]. Nevertheless, they either focus on debugging the compatibility of the
hardware-software interface or checking the correctness of standard operations for the
data structure itself, rather than verification of the functional correctness of the device
driver algorithm. The verification problem we have encountered with MSR is unique in
that (1) MSR operates over a large set (potentially millions) of structured data and (2) It
is necessary to verify MSR as it is, since our goal is to verify the correctness of existing
code – optimization or aggressive abstraction of the algorithm should be minimized.

Second, the model checking results provide a practical alternative verification tech-
nique to testing. Although the model checking results guarantee the correctness of MSR
on a small size flash only, the exhaustive analysis results provide higher confidence
compared to testings previously performed by Samsung. Furthermore, since MSR is
a core logic used for most flash software with variations, the verification framework
and strategy used in this project can be applied to other flash software with only mod-
est efforts. Samsung highly valued the verification results and started to apply model
checking to a flash file system as a subsequent project.

Finally, we conducted a series of experiments to verify MSR by using three popu-
lar model checkers: NuSMV, Spin, and CBMC. The results of the experiments show
that the selection of a model checking technique has a significant effect on the perfor-
mance of verifying MSR. It is further demonstrated that effort to create and maintain
a target model is also a crucial factor for successful application of model checking in
industry. Although a number of case studies involving comparisons between different
model checkers have been reported [26,9,12], comparison from the view point of data-
intensive applications has not seen intensive study thus far. We believe that this issue
is crucial to the success of verifying flash software. Furthermore, the present empirical
studies involving the three different model checkers can provide valuable insight into
the relative strengths and weaknesses of these popular model checking techniques.

2 Overview of the OneNAND Verification Project

Our team for this project consists of two professors, one graduate student, and one
senior engineer at Samsung. We worked on this verification project for six months. We
spent the first three months reviewing the design and code of the device driver software
and the characteristics of OneNAND flash. Most parts of the device driver software
are written in C (∼30000 lines) and a small portion of the software is written in ARM
assembly language.

146 M. Kim et al.

2.1 Overview of the Device Driver Software for OneNAND Flash Memory

A unified storage platform (USP) is a software solution to operate OneNAND device.
Figure 1 presents an overview of USP. USP allows applications to store and retrieve
data on OneNAND through a file system. USP contains a flash translation layer (FTL)
through which data and programs in the OneNAND device are accessed. FTL consists
of three layers - a sector translation layer (STL), a block management layer (BML),
and a low-level device driver layer (LLD). Generic I/O requests from applications are
fulfilled through the file system, STL, BML, and LLD, in order. A prioritized read
request for executing a program is made through demand paging manager (DPM) and
this request goes to BML directly. A prioritized read request from DPM can preempt
generic I/O operations requested from STL.

OneNAND Flash Memory Devices

Low Level Device Driver (LLD)

Block Management (BML)

Sector
Translation (STL)

Demand Paging
Manager (DPM)

OS
Adap-
tation

Module

Unified
Storage
Platform

App1 App2 App3

Flash
Translation

Layer (FTL)

File
System

generic
I/O requests

prioritized
read requests

Fig. 1. An overview of USP

2.2 Overview of the Sector Translation Layer (STL)

A NAND flash device consists of a set of pages, which are grouped into blocks. A unit
can be equal to a block or multiple blocks. Each page contains a set of sectors. When
new data is written to flash memory, rather than overwriting old data directly, the data
is written on empty physical sectors and the physical sectors that contain the old data
are marked as invalid. Since the empty physical sectors may reside in separate physical
units, one logical unit (LU) containing data is mapped to a linked list of physical units
(PU). STL manages this mapping from logical sectors (LS) to physical sectors (PS).
This mapping information is stored in a sector allocation map (SAM), which returns
the corresponding PS offset from a given LS offset. Each PU has its own SAM.

Figure 2 illustrates a mapping from logical sectors to physical sectors where 1 unit
contains 4 sectors. Suppose that a user writes LS0 of LU7. An empty physical unit
PU1 is then assigned to LU7, and LS0 is written into PS0 of PU1 (SAM1[0]=0).
The user continues to write LS1 of LU7, and LS1 is subsequently stored into PS1 of

Formal Verification of a Flash Memory Device Driver 147

Logical

unit 7

SAM of physical unit 1

Logical offset Physical offset

Physical

unit 4

Physical

unit 1

unit 7

SAM of physical unit 4

Logical offset Physical offsetLogical offset Physical offset

0 3

1 2

2

unit 4

LS2

unit 1

LS0

LS1

LS1

Logical offset Physical offset

0

1

2 02

3

LS1

LS0
2 0

3

Fig. 2. Mapping from logical sectors to physical sectors

PU1 (SAM1[1]=1). The user then updates the LS1 and LS0 in order, which results in
SAM1[1]=2 and SAM1[0]=3. Finally, the user adds LS2 of LU7, which adds a new
physical unit PU4 to LU7 and yields SAM4[2]=0.

3 Multi-sector Read Operation

USP provides a mechanism to simultaneously read as many multiple sectors as possible
in order to improve the reading speed. The core logic of this mechanism is implemented
in a single function in STL. Due to the non-trivial traversal of data structures for logical-
to-physical sector mapping (see Section 2.2), the function for MSR is 157 lines long and
highly complex, having 4-level nested loops. Figure 3 describes simplified pseudo code
of these 4-level nested loops. The outermost loop iterates over LUs of data (line 2-17).
The second outermost loop iterates until the LS’s of the current LU are completely
read (line 4-15). The third loop iterates over PUs mapped to the current LU (line 6-
14). The innermost loop identifies consecutive PS’s that contain consecutive LS’s in the
current PU (line 7-10). This loop calculates conScts and offset, which indicate
the number of such consecutive PS’s and the starting offset of these PS’s, respectively.
Once conScts and offset are obtained, BML READ reads these consecutive PS’s as
a whole fast (line 11).

For example, suppose that the data is “ABCDEF” and each unit consists of four
sectors and PU0, PU1 and PU2 are mapped to LU0 (“ABCD”) in order and PU3 and
PU4 are mapped to LU1 (“EF”) in order as depicted in Figure 4(a). Initially, MSR
accesses SAM0 to find which PS of PU0 contains LS0(‘A’). Then, it finds SAM0[0]=1
and reads PS1 of PU0. Since SAM0[1] is empty (i.e., PU0 does not have LS1(‘B’)),
MSR moves to the next PU, which is PU1. For PU1, MSR accesses SAM1 and finds that
LS1(‘B’) and LS2(‘C’) are stored in PS1 and PS2 of PU1 consecutively. Thus, MSR
reads PS1 and PS2 of PU1 altogether through BML READ and continues its reading
operation.

The requirement for MSR is that the content of the read buffer should correspond
to the original data in the flash memory when MSR finishes reading, as given by the
following invariant formula for INV .

INV : after MSR→ (∀i.logical sectors[i] = buf [i])

148 M. Kim et al.

01:curLU = LU0;
02:while(curLU != NULL) {
03: readScts = # of sectors to read in the current LU
04: while(readScts > 0) {
05: curPU = LU->firstPU;
06: while(curPU != NULL) {
07: while(...) {
08: conScts = # of consecutive PS’s to read in curPU
09: offset = the starting offset of these consecutive PS’s in curPU
10: }
11: BML_READ(curPU, offset, conScts);
12: readScts = readScts - conScts;
13: curPU = curPU->next;
14: }
15: }
16: curLU = curLU->next;
17:}

Fig. 3. Loop structures of MSR

1 0
1 1
2

3

E
AB F

C
D

3 3
0 2

3
1

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4

(a) A distribution of
ABCDEF”

B
D

F
AC E

PU0~PU4SAM0~SAM4 SAM0~SAM4

(c) A distribution of
“FEDCBA”

(b) Another distribution of
“ABCDEF”

1 0
1 1
2

3

B
F E A

D
C

PU0~PU4SAM0~SAM4

Fig. 4. Possible distributions of data “ABCDEF” and “FEDCBA” to physical sectors

In our verification tasks, we assume that each sector is 1 byte long and each unit
has four sectors. Also, we assume that data is a fixed string of distinct characters (e.g.,
“ABCDE” if we assume that data is 5 sectors long, and “ABCDEF” if we assume that
data is 6 sectors long). We apply this data abstraction since the values of logical sectors
should not affect the reading operations of MSR, but distribution of logical sectors into
physical sectors does. For example, for the same data “ABCDEF”, the reading opera-
tions of MSR are different for Figure 4(a) and Figure 4(b), since they have different
SAM configurations (i.e. different distributions of “ABCDEF”). However, for “FED-
CBA” in Figure 4(c) which has the same SAM configuration of Figure 4(a), MSR oper-
ates exactly same way as for Figure 4(a). Thus, if MSR reads “ABCDEF” in Figure 4(a)
correctly, MSR reads “FEDCBA” in Figure 4(c) correctly too.

In addition, we assume that data occupies 2 logical units. The number of possible
distribution cases for l LS’s and n physical units, where 5 ≤ l ≤ 8 and n ≥ 2, increases
exponentially in terms of n, and can be obtained by

n−1∑

i=1

((4×i)C4 × 4!)× ((4×(n−i))C(l−4) × (l − 4)!)

For example, if a flash has 1000 physical units with data occupying 6 LS’s, there exist
a total of 3.9× 1022 distributions of the data.

“

Formal Verification of a Flash Memory Device Driver 149

As you have seen from Figure 4, the operations of MSR depend on the values of
SAM tables and the order of PUs linked to LU. Therefore, MSR has characteristics of
control-oriented program (4-level nested loops) and data-oriented program (large data
structure consisting of SAMs and PUs) at the same time, although the values of PS’s
are not explicitly manipulated.

4 Model Checking MSR Using NuSMV

NuSMV [6] is an open-source symbolic model checker branched from SMV. Although
the SMV family has been widely used in the hardware industry, its application to in-
dustrial software has been limited to a couple of case studies [5,20], mostly in the area
of software specifications. Despite that explicit model checking has been favored in
software verification, MSR has the following attractive characteristics, which have mo-
tivated the present authors to verify it with symbolic model checking.

1. MSR operates with a semi-random environment – sector writing is assumed to be
random except for having some constraints.

2. MSR’s data structure can be abstracted in a simple array form with a couple of
simple operations, such as assignments and equality checking.

3. MSR is a single-threaded program that can be verified independently from other
modules.

Unlike explicit model checking, which requires that the system environment be
modeled explicitly, symbolic model checking allows free-variables to represent envi-
ronmental inputs whose possible values are exhaustively evaluated through symbolic
computation; this is one of the advantages of checking MSR using NuSMV. Whereas
it is generally known that symbolic model checking performs poorly on applications
with a large data structure and arithmetic operations, the main data structure in MSR is
relatively simple two 2-dimensional integer arrays (PUs and SAMs) with no arithmetic
operations. MSR’s single-threaded structure is also suitable for using NuSMV, which is
known to be inefficient in handling interleaves.

4.1 Model Translation

We manually specified a NuSMV model for MSR after reading corresponding design
documents and C code. The first challenge in creating a NuSMV model for MSR arises
from the different modeling paradigms used in C and NuSMV; the NuSMV modeling
language is dataflow-based, whereas C is a control-flow based language. Thus, trans-
lation of a C program into a NuSMV model requires introduction of control points to
reflect control-dependent changes of data variables.

The second challenge is to model the data structure in NuSMV. Even though SAMs
and PUs can be abstracted into simplified two-dimensional integer arrays, modeling
such data structure and operations for NuSMV is not a trivial task, especially because
NuSMV does not support index variables for arrays. Circumventing the expressional
limitations of NuSMV, the resulting translated MSR model consists of more than 1000
lines of code; the original C-code is 157 lines long.

150 M. Kim et al.

The third challenge involves setting the operational environment of MSR. MSR as-
sumes randomly written logical data on PUs and a corresponding SAM records the
actual location of each LS. Unfortunately, however, the writing is not purely random,
which means the open environment of the symbolic model checking has to be con-
strained according to several rules; the followings are some of the representative rules
applied to the random writing.

1. One PU is mapped to at most one LU.
2. If the ith LS is written in the kth sector of the jth PU, then the (i mod m)th offset

of the jth SAM is valid and indicates the PS number k, where m is a number of
sectors per unit (4 in our experiments).

3. The PS number of the ith LS must be written in only one of the (i mod m)th offsets
of the SAM tables for the PUs mapped to the ! i

m"th LU.

For example, for imposing the last two rules, we use the following weaker invari-
ants, which include spurious value combinations in SAMs, to reduce the complexity
of imposing invariants. Note that this weakening of invariants does not produce false
positives when checking the INV property specified in Section 3.

∀i, j, k (logical sectors[i] = PU [j].sect[k]→ (SAM [j].valid[i mod m] = true

& SAM [j].offset[i mod m] = k

& ∀p.(SAM [p].valid[i mod m] = false)

where p �= j and PU [p] is mapped to! i

m
"th LU))

4.2 Performance Analysis

We have performed a series of experiments in order to assess the feasibility and scala-
bility of model checking the invariant property INV .

Experimental settings and verification results. We verified MSR using a workstation
equipped with Xeon 5160 (dual core 3 GHz) and 32 gigabytes memory. The worksta-
tion runs 64 bit Fedora Linux 7 and uses NuSMV 2.4.3. The scalability of NuSMV
model checking is assessed by measuring the amount of time and memory required to
verify the INV property as the number of physical units increases from 5 to 8 and
the size of logical data increases from 5 to 7 sectors. Figure 5 shows the growth of
time and memory consumption from these experiments; the verification time grows ex-
ponentially both with the number of physical units and the number of logical sectors
(Figure 5 (a)). Note that the memory consumption shows better scalability than that of
time consumption (Figure 5 (b)).

Although NuSMV succeeds in verifying that the MSR satisfies the INV property, the
exponential time complexity limits the applicability of NuSMV model checking to only
a small flash memory. As it requires about 11 hours and 550 megabytes of memory to
verify the INV property for the MSR model with 7 physical units and 7 logical sectors,
we conclude that further experiments with larger numbers of physical units and logical
sectors would not be feasible due to a large amount of verification time.

Formal Verification of a Flash Memory Device Driver 151

10000

100000 1000

A lengthA length

1000

S
e

c
o

n
d

s

5

6

100

M
e

g
a

b
y
te

s

5

6

A length

of data

A length

of data

10

100

S

7

10

M

7

5 6 7 8
A number of physical units

5 6 7 8
A number of physical units

(a) Time consumption (b) Memory consumption

Fig. 5. Time and space complexities of NuSMV model checking

Dynamic reordering and time complexity. The exponential growth of verification
time is mainly due to the dynamic reordering of BDD variables to keep the sym-
bolic representation of the state space as compact as possible. OBDD representations
for a Boolean formula can be quite different in terms of the number of nodes repre-
senting the formula. Since finding optimal BDD variable orderings is an intractable
problem [3], NuSMV periodically attempts to improve the orderings by moving each
variable through the ordering to find its best location using the sifting algorithm [23].
While this ordering process is known to be effective in terms of reducing the state-
space, it is time-consuming, as is clearly seen from our experiments. We observed that
more than 90% of verification time was consumed for dynamic reordering.

The NuSMV version of the MSR model (with 5 LS’s, 5 PUs) requires 365 BDD
variables for its symbolic representation and generates more than 1,182,300 BDD nodes
during the verification process, which is 12 times larger in size than the rule-of-thumb-
limit for effective reordering, i.e., 100,000. Note that the number of BDD variables
encoding the MSR is undesirably large, mainly due to the encodings of data variables;
it is necessary to encode at least 20 data variables for 5 PUs with 4 PS’s each. Even
with a restricted domain, e.g., with the size of the data domain 5, each PS needs 6
(=3+3) Boolean variables, resulting in a total of 120. Since MSR also maintains a SAM
of approximately the same size, we can deduce that more than 240 BDD variables are
used for encoding the main data structure alone.

Search depth and performance. From the experiments, we note that the long search
depth for checking MSR constitutes a major performance bottleneck. In [26], a case
study on model checking a flight guidance system (FGS) is reported. FGS is encoded in
a larger number of BDD variables, but shows better performance than that of MSR; one
of the FGS models was encoded with 839 BDD variables and the peak number of nodes
was 3,213,168. The major difference is that FGS requires less than 10 iterations for
symbolic fixed-point computation, whereas MSR models require 37 - 53 iterations, be-
cause of the nested loops used in the MSR algorithm. The long search depth exacerbates
memory and time complexity since reordering is performed at each search iteration.

To assess the effect of long search depth on verification performance, we remodeled
the MSR environment such that the random writing environment is explicitly modeled

152 M. Kim et al.

with non-deterministic random value assignments. Note that adding a random writing
routine increases the complexity of symbolic model checking especially in terms of the
search depth; for 5 LS’s written in 5 PUs, each with 4 sectors, at least 5× 5× 4 = 100
iterations are required to simulate random writing. Experiments show that a model with
a random writing routine requires 169 iterations for fixed-point computation, spending
10 times more verification time than the model with invariants.

4.3 Data Abstraction

In our experiments, we have applied a simple data abstraction on the domain of LS’s to
avoid the state-space explosion problem. Though the original LS’s range over integer
domain, we can reduce the domain to a set of integer values where the total number of
distinct values in the set equals to the number of logical sectors to read, because the
MSR model as well as the INV property requires only equality checking between LS’s
and the read buffer. For example, 6 distinct values, e.g., {0,1,2,3,4,5}, would be enough
for checking the INV property for MSR with 6 logical sectors.

In fact, two distinct values, {0,1}, for each data variable may be enough to check an
equality condition a = b since all possible combinations of values {(a, b)|a, b ∈ N}
can be partitioned into two equivalent classes, A = {(a, b)|a = b}, B = {(a, b)|a �= b},
and one representative value pair per each equivalent class, e.g., (0,0) for A and
(0,1) for B, is enough to cover all possible cases. Nevertheless, we cannot reduce
our data domain uniformly to {(0,0), (0,1)} because of the constraints we have im-
posed on the MSR models; as mentioned in Section 4.1, we have imposed sev-
eral constraints for setting the operational environment of MSR instead of explicitly
modeling the sector writing routine for performance reasons. One example of such
invariants, as introduced in Section 4.1, constrains that no two logical sectors con-
tain the same data. For example, suppose logical sectors[0] = logical sectors[1]
and logical sectors[0] = PU [0].sect[0] & logical sectors[1] = PU [0].sect[1],
then we can imply that logical sectors[0] = PU [0].sect[0] = PU [0].sect[1]. This
implies to a contraction, SAM [0].offset[0] = 0 & SAM [0].valid[0] = 1 and
SAM [0].offset[0] = 1 & SAM [0].valid[0] = 1, by the invariants introduced in Sec-
tion 4.1. Therefore, we need at least k distinct values to distinguish k logical sectors.

5 Model Checking MSR Using Spin

Due to common characteristics of Promela and C, creation of a formal Promela model
from MSR is more convenient compared to NuSMV. Furthermore, the Promela model
of MSR was semi-automatically generated by using Modex [15] which is a general
purpose translation tool from C to Promela.

5.1 Model Translation

In a Promela model, the MSR environment (i.e., logical sectors, physical sectors and
SAM) is specified such that all possible distributions of data into physical sectors are
generated exhaustively through non-deterministic guarded commands.1

1 Note that this operational environment for model checking can be used to set up the actual
testing environment. For more detail, see [21].

Formal Verification of a Flash Memory Device Driver 153

Modex [15] translates the control structure of MSR such as if and while into
corresponding Promela control structures. Other C statements are inserted as embedded
C code into the Promela model starting with a keyword c expr{...} for Boolean
expressions and c code{...} for assignments and function calls [15]. As a result,
the Promela model generated by Modex has the same 4-level nested loops as MSR
does. The embedded C codes are blindly copied from the text of the Promela model
into the code of the verifier that Spin generates.

In addition, we modified the original MSR C code to work correctly and ef-
ficiently under the Spin verification environment. For example, the linked lists of
PUs and SAMs in the original MSR C code were replaced with arrays of PUs
and SAMs. These modifications were performed through an explicit translation ta-
ble given to Modex. Modex textually replaces C patterns in the table with the cor-
responding Promela codes specified in the table. The requirement property is spec-
ified by the assert statement assert(logical sectors[0]==buf[0] &&
logical sectors[1]==buf[1]...) located at the end of the MSR process.

5.2 Data Abstraction

In explicit model checking, all system states are stored in a huge hash table explicitly.
Thus, data structures in the model do not incur extra overhead, since data structures are
stored into the state vector as they are, not through complex BDD encoding.

MSR traverses a large amount of memory, most of which are taken by PUs and
SAMs. The PUs and SAMs in embedded C code are tracked throughout the verification
process, but are not stored in the state vector.2 Instead, we add a new signature that rep-
resents the state of PUs and SAMs and put that signature into a state vector so that verifi-
cation produces the correct result with this data abstraction. The signature is an ordered
list of the physical locations of logical sectors (i.e. pairs of a PU number and a PS num-
ber). For example, the signature for Figure 4(a) is 〈(0,1),(1,1),(1,2),(2,3),(3,0),(4,1)〉
since ‘A’ is located at PU0’s PS1 and ‘B’ is located at PU1’s PS1 and so on. Therefore,
there exists an one-to-one relation between signatures and states of PUs and SAMs and
this abstraction preserves logical soundness according to the soundness theorem in [15].

Considering that the size of PUs is much larger than that of data, a significant amount
of memory is reduced through this abstraction. For example, if 5 sectors long data is
distributed over 10 physical units, the state vector should contain at least 80 (=2 × (10
PUs × 4 sectors)) bytes for PUs and SAMs. The corresponding signature is 4 bytes
long (= 5 × (#log210$bits + #log24$bits)), resulting in a 95% reduction of the state
vector size for PUs and SAMs.

5.3 Performance Analysis

We used Spin 4.3.0 on the same computing platform where NuSMV experiments were
performed. We have performed two series of experiments with different lengths of data
as well as different numbers of physical units. The first series of experiments are per-
formed without the data abstraction described in Section 5.2 and the second series of

2 This data abstraction on embedded C data is achieved through c track keyword with
Unmatched parameter. This feature has been available since Spin 4.1.

154 M. Kim et al.

1

10

100

1000

10000

5 6 7 8 9 10

S
ec

on
ds

A number of physical units

5(abs)
6(abs)
7(abs)
8(abs)
5
6
7
8

A length
of data

100

1000

10000

100000

5 6 7 8 9 10

M
eg

ab
yt

es

A number of physical units

5(abs)
6(abs)
7(abs)
8(abs)
5
6
7
8

A length
of data

(a) Time consumption (b) Memory consumption

Fig. 6. Time and space complexities of Spin model checking

experiments are performed with the data abstraction.3 Figure 6 illustrates performance
data for checking the requirement property. In all of the experiments, Spin shows that
the requirement property is satisfied.

For experiments without the data abstraction, Spin verified a flash containing 10 PUs
and 5 logical sectors in 356 seconds, consuming 9.6 gigabytes of memory. In com-
parison, experiments with the data abstraction, denoted as “n(abs)” in Figure 6, Spin
consumes 2.1 gigabytes of memory in 230 seconds, which reduces the memory con-
sumption by 78% and the verification time by 35%, as shown in Table 1. Data abstrac-
tion reduces not only memory consumption but also verification time, since the time
taken to store and retrieve state space is reduced as well.

Table 1. Memory and time reductions for 5 logical sectors due to the data abstraction

of physical units 5 6 7 8 9 10

Memory reduction 17% 38% 57% 68% 74% 78%
Time reduction 23% 24% 26% 32% 34% 35%

As can be seen in Figure 6, the memory consumption and verification time increase
exponentially in relation to the number of physical units. The bottleneck in this ver-
ification task is its memory consumption. Spin handles states explicitly, and thus the
exponentially increasing number of possible distribution cases accordingly causes an
exponential increase of memory. Compared to NuSMV, however, Spin is significantly
faster for the verification tasks of this type. For example, for a case of 7 logical sectors
and 7 physical units, Spin takes 27 minutes with 11.4 gigabytes with the data abstrac-
tion, while NuSMV takes more than 11 hours with 550 megabytes. In Spin, scalability
on memory consumption is a larger problem while verification time is a more serious
problem in NuSMV.

3 These experiments were performed without lossy compression such as bitstate hashing. For
experiments without data abstraction, the -DCOLLAPSE option was used.

Formal Verification of a Flash Memory Device Driver 155

6 Model Checking MSR Using CBMC

CBMC [10] automatically translates a target C program into a corresponding SAT for-
mula, then checks whether the C program satisfies a given requirement or not by solving
the SAT formula through an external SAT solver. Although SAT is a NP-complete prob-
lem and a generated SAT formula can be huge including millions of Boolean variables
and clauses, many structured problem instances can be solved in an acceptable time [2]
with help of heuristics such as VSIDS or random restart [18].

6.1 Model Translation

CBMC does not need an explicit model translation, since it can directly analyze MSR
C code. However, to obtain meaningful verification result, we have to build an envi-
ronment that provides only valid configurations of a flash memory to MSR, as we did
for NuSMV experiments. We specified an environment model using assume statements
(CPROVER assume(Boolean expression)) and the environment model is similar
to that of NuSMV experiments since both of them share most of the invariants (e.g.
invariants in Section 4.1). In addition, a target C code was modified to use an array
representation of SAMs and PUs for fair performance comparison with the other model
checkers.

For the numbers of loop unwindings for bounded model checking, we can get a valid
upper bound of each loop from the loop structures described in Section 3.

– The outermost loop iterates at most L times, where L is a number of LUs.
– The second outermost loop iterates at most 4 times, since one LU contains 4 LS’s

(i.e., readScts≤ 4) and at least one LS is read at each iteration.
– The third loop iterates at most M times where M is a total number of PUs.
– The innermost loop iterates at most 4 times, since one PU contains 4 PS’s.

For example, L = 2 and M = 5 for Figure 4(a).

6.2 Performance Analysis

We used CBMC 2.6.0 (with MiniSAT 1.1.4 [11]) on the same computing platform
where NuSMV and Spin experiments were performed. We performed a series of
experiments with different lengths of data as well as different numbers of PUs.
In all of these experiments, the requirement property specified by the assert state-
mentassert(logical sectors[0]==buf[0] && logical sectors[1]
==buf[1]...) is satisfied.

Figure 7 illustrates the performance results of this series of experiments. In addition,
Table 2 enumerates the sizes of SAT instances of the MSR problems. For example, if
8 sectors long data is distributed over 10 PUs, then the corresponding SAT formula
contains 8.6× 105 Boolean variables and 2.9× 106 clauses.

Compared to the results of the Spin experiments, CBMC demonstrates better perfor-
mance in both verification time and memory consumption for large problem instances.
For example, when data is 7 sectors long and the number of PUs is 7, CBMC takes 203
seconds and consumes 148 megabytes of memory while Spin with the data abstrac-
tion takes 1604 seconds and consumes 11.4 gigabytes of memory. CBMC demonstrates

156 M. Kim et al.

10000.0 1000

1000.0

d
s 5

A length

of data

100

y
te

s 5

A length

of data

100.0S
e

c
o

n
d

6

7

8

100

M
e

g
a

b 6

7

8

10.0

5 6 7 8 9 10
A number of physical units

8

10

5 6 7 8 9 10
A number of physical units

(a) Time consumption (b) Memory consumption

Fig. 7. Time and space complexities of CBMC model checking

Table 2. The sizes of the SAT CNF instances of MSR with different configurations

5 6 7 8 9 10
×105 var clause var clause var clause var clause var clause var clause

5 1.9 6.3 2.4 7.7 2.8 9.2 3.2 11 3.7 12 4.2 14
6 3.6 12 4.4 15 5.3 17 6.2 21 7.1 24 8.0 27
7 3.8 12 4.6 15 5.5 18 6.4 21 7.4 25 8.3 28
8 3.9 13 4.8 16 5.7 19 6.7 22 7.6 26 8.6 29

better performance compared to NuSMV for large problem instances, too4; NuSMV
takes 11 hours and consumes 550 megabytes of memory for the problem of the same
size. Detailed analysis on these CBMC based experiments will be reported in a separate
article.

7 Discussion

In this section, several issues are discussed on the basis of our experience in this project.

7.1 Application of Model Checking in Industrial Software Projects

Formal verification techniques are being evaluated for experimental purposes for soft-
ware projects in major electric device manufacturers such as Samsung, as a comple-
ment of software testing, which has thus far been the software verification technique.
Samsung performed the majority of testing for the OneNAND device driver randomly,
which does not provide sufficient coverage for detecting bugs even with a huge number
of test cases, since there are astronomically many possible scenarios (see Section 3).
Even with a scalability limitation, this OneNAND verification project was evaluated
as a success as it confirmed the correctness of the MSR, which could not be assumed

4 We could not use the SAT-based bounded model checking capability of NuSMV in this project,
since the smallest problem instance took more than 3 hours.

Formal Verification of a Flash Memory Device Driver 157

through testing, for a small flash memory; exhaustive exploration through model check-
ing provides high confidence in the correctness of MSR.

7.2 Advanced Abstraction Techniques

We have applied a basic data abstraction (e.g. a fixed string “ABCDE” serves for all 5
sectors long strings) described in Section 3 to reduce state space of MSR. In addition,
we used weaker invariants to model the environment of MSR with reduced complexity,
which does not produce false positives (see Section 4.1). However, more aggressive
abstractions based on symmetry turned out to be hard to apply for this project, since
we have to validate several assumptions on the MSR code to exploit symmetry, which
requires inductive proof techniques which are beyond the scope of the project.

For the experiments in NuSMV, only primitive data type reductions are applied to
reduce the search space. Other aggressive abstraction techniques, such as predicate ab-
straction [16], counter-example-guided abstraction-refinement (CEGAR) [7], and tem-
poral case splitting [19], might be applied to enhance the performance of the NuSMV
verification. Nevertheless, their effectiveness on MSR is questionable due to the follow-
ing reasons:

1. A simple trial experiment shows that case-splitting does not always improve the
verification performance for MSR. For example, we have checked each sub-case
of the INV property, after MSR → logical sector[i] = buf [i], separately for
each i, where 0 ≤ i ≤ 4 and a flash has 7 PUs. The verification time required for
the case i = 1 is about 840 seconds. Note that the time required for checking the
original INV property for the same setting is only 530 seconds.

2. The predicate abstraction or CEGAR approach can be effective when checking the
safety or compatibility of a software module whose unrelated branches of control
flow and/or large data domains can be safely abstracted away. In the case of MSR,
however, each control branch contributes to its functional correctness, leaving small
chances for reducing complexity by abstraction. We also note that the data domain
in MSR has already been reduced to a minimal set (e.g. {0,1,2,3,4} for 5 sectors
long data) for the verification using NuSMV.

For the Spin experiments, besides the one-to-one data abstraction described in Sec-
tion 5.2, there exist other data abstraction techniques that have yet to be applied. For
example, [17] proposes a memory-efficient hash table that implements a sophisticated
hash table structure which uses less memory at the cost of operation time overhead. To
apply this technique, however, we should modify the Spin source code to change its
hash table structure, which is beyond the scope of the project.

For the CBMC experiments, there exist not much room to apply aggressive abstrac-
tion to MSR itself, since the MSR C code should not be modified much for abstraction
purpose. However, the environment model of MSR can be built in an efficient way. For
example, the environment model can be built using weaker invariants to reduce com-
plexity (see Section 4.1).

158 M. Kim et al.

7.3 Scalability of Model Checking

Even with the abstraction techniques noted in Section 7.2, it is not clear that model
checking can be an overall solution for verifying software similar to MSR. For software
handling a large data structure, model checking has an inherent scalability limitation,
since the size of the environment to be modeled and analyzed is extremely large, even
with symmetry reduction or state partitioning. Thus, for software similar to MSR, it
still seems appropriate to utilize human expertise through a theorem prover, constraint
solving, or inductive proofs. For this aspect, invariant based modeling is preferable since
invariant based model can be adapted to specify a target system for theorem proving.
We are planning to study this problem further by using a theorem prover.

8 Conclusion and Future Work

We have shown that a difficult verification problem in industrial software can be tack-
led using automated formal verification tools. Though the project was conducted on a
small-scale, Samsung highly valued the verification result. It was also confirmed that
comprehensive verification techniques have feasible use and that they can complement
testing or provide an alternative solution. This has motivated our next project; we plan to
analyze a flash file system to check data consistency at the events of random power-off.

At the same time, we could understand relative strengths and weaknesses of the
three popular model checking techniques empirically - BDD-based one, explicit one,
and SAT-based one. We will analyze the experimental results of CBMC further, since
CBMC demonstrated the best verification performance in this project and requires min-
imal verification effort due to the capability of verifying C code. The experience gained
in this project also led the authors to realize the practical limitations on the scalability
of model checking and the necessity of conducting further research to address the issue
through the use of smart abstraction techniques and/or by utilizing human expertise.

References

1. Samsung OneNAND fusion memory,
http://www.samsung.com/global/business/semiconductor/
products/fusionmemory/Products OneNAND.html

2. SAT competition 2007: a satellite event of the SAT 2007 conference (2007),
http://www.satcompetition.org/2007/

3. Bollig, B., Wegener, I.: Improving the variable ordering of obdds is np-complete. IEEE
Transactions on Computers 45(9) (September 1996)

4. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model check-
ing of complex dynamic data structures. In: 13th International Static Analysis Symposium,
pp. 52–70 (2006)

5. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J.D.: Model
checking large software specifications. IEEE Transactions on Software Engineering 24(7),
498–520 (1998)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In:
Proceeding of International Conference on Computer-Aided Verification (2002)

http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products_OneNAND.html
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products_OneNAND.html
http://www.satcompetition.org/2007/

Formal Verification of a Flash Memory Device Driver 159

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement. In: Proceedings of the 12th International Conference on Computer Aided Verifica-
tion, July 2000, pp. 154–169 (2000)

8. Darga, P.T., Boyapati, C.: Efficient software model checking of data structure properties.
In: 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (2006)

9. Dong, Y., Du, X., Holzmann, G.J., Smolka, S.A.: Fighting livelock in the GNU i-protocol:
a case study in explicit-state model checking. International Journal on Software Tools for
Technology Transfer (4) (2003)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

11. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Eisner, C., Peled, D.: Comparing symbolic and explicit model checking of a software system.
In: SPIN Workshop (2002)

13. Ball, T., et al.: Thorough static analysis of device drivers. ACM SIGOPS Operating Systems
Review 40(4), 73–85 (2006)

14. Holzmann, G.J.: The Spin Model Checker. Wiley, New York (2003)
15. Holzmann, G.J., Joshi, R.: Model-driven software verification. In: Spin Workshop (2004)
16. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
17. Geldenhuys, J., Valmari, A.: A nearly memory-optimal data structure for sets and mappings.

In: Spin Workshop (2003)
18. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Computer

Aided Verification (2002)
19. McMillan, K.: Verification of infinite state systems by compositional model checking. In:

Conference on Hardware Design and Verification Methods (1999)
20. Miller, S.P., Tribble, A.C., Whalen, M.W., Heimdahl, M.P.E.: Proving the shalls: Early vali-

dation of requirements through formal methods. International Journal on Software Tools for
Technology Transfer 8(4), 303–319 (2006)

21. Kim, M., Kim, Y., Choi, Y., Kim, H.: Pre-testing flash device driver through model checking
techniques. In: IEEE Int. Conf. on Software Testing, Verification and Validation (2008)

22. Monniaux, D.: Verification of device drivers and intelligent controllers: A case study. In: 7th
ACM and IEEE international conference on Embedded Software (2006)

23. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: International
Conference on Computer-Aided Design(ICCAD) (November 1993)

24. Anand, S., Pasareanu, C.S., Visser, W.: Symbolic execution with abstraction. Software Tools
for Technology Transfer (2008)

25. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent linux
device drivers. In: Automated Software Engineering (November 2007)

26. Choi, Y.: From NuSMV to SPIN: Experiences with model checking flight guidance systems.
Formal Methods in System Design, 199–216 (2007)

Layered Duplicate Detection in

External-Memory Model Checking

Peter Lamborn and Eric A. Hansen

Dept. of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762

pcl16@msstate.edu, hansen@cse.msstate.edu

Abstract. This paper presents a disk-based explicit-state model check-
ing algorithm that uses an approach called layered duplicate detection.
In this approach, states encountered during a breadth-first traversal of
the graph of the transition system are stored in memory according to
the layer of the graph in which they are first encountered. With this lay-
ered organization of memory, transition locality is exploited by checking
only the most recent layers for duplicates. In RAM, exploiting transi-
tion locality in this way saves time. In external memory, it saves space.
In addition, a layered structure allows an easy method of counterexam-
ple reconstruction in disk-based model checking. We prove a worst-case
linear bound on the redundant work performed by our approach. Ex-
perimental results indicate that average case redundant work is much
better than the worst-case. The implemented model checker has been
used to verify a transition system that required more than 275 GBs of
disk storage.

1 Introduction

Explicit-state model checking is a methodology for verifying the properties of a
system by a systematic search for error states in a state graph that represents
the behavior of the system. An “on-the-fly” algorithm for searching the state
graph begins with a queue that contains the start state, removes states from
the queue in an order that depends on the search strategy (e.g., depth-first,
breadth-first, or best-first), generates the successors of each state and adds them
to the queue. Generated states are also stored in a hash table that is used for
duplicate detection, that is, for determining whether or not a newly-generated
state is a duplicate of a previously-generated state before adding it to the queue.
A complete search of the graph is needed to verify a system. Therefore, the
memory required is proportional to the number of states in the model. Thus,
memory is a bottleneck for model checking.

One solution is to use external memory. When RAM is full, states can be
moved to an external memory device. Delayed duplicate detection (DDD) is an
approach to external memory graph search that writes duplicates temporarily to
disk and eventually eliminates them [1,2,3] Because disk is accessed most quickly

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 160–175, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Layered Duplicate Detection in External-Memory Model Checking 161

in a sequential manner, allowing temporary duplicates can save time compared
to accessing disk randomly to eliminate the duplicates immediately. But DDD
still incurs significant overhead.

When searched in a breadth first manner, most graphs exhibit transition lo-
cality [4]. Transition locality means that transitions tend to be in local levels of
a breadth first visit [5]. In other words, newly-generated states are more likely
to be duplicates of a state in a recent layer than a state in a more distant layer.
We introduce layered duplicate detection as an approach to exploiting transition
locality in eliminating duplicates in external-memory search. By layered dupli-
cate detection, we mean storing the search graph in layers and only saving and
checking the most recent layers for duplicates. This approach is useful both in
deciding which states to store in a hash table in RAM, and in deciding which
states to store on disk. We show that layered duplicate detection makes it pos-
sible to improve the running time of an external-memory model checker, as well
as decrease the amount of disk storage it needs.

The paper is organized as follows. Section 2 gives an overview of relevant back-
ground and related work. Section 3 presents the new algorithm as an extension
of the Murφ model checker [1]. Section 4 reports experimental results. Section 5
concludes the paper and discusses potential future directions.

2 Background

There are many approaches to addressing the state explosion problem in model
checking. Two of the most relevant approaches for this paper are partial storage
methods and external memory model checking.

2.1 Partial Storage Methods

Graph-search algorithms avoid redundant search of the same parts of a state-
space graph by storing already-visited states in a hash table and checking each
newly-generated state to see whether it is a duplicate of an already-visited state.
The set of states that has already been visited is referred to as the closed set
of the search algorithm. When the closed set is too large to fit in RAM, one
solution is to store only part of it. Since this allows redundant search, it presents
a time-space tradeoff. The amount of redundant search can be limited by an
intelligent choice of which states to keep in the hash table and which to remove.

We distinguish three types of partial storage methods: depth-first search
(DFS) approaches, breadth-first search (BFS) without generation of duplicates,
and BFS with generation of duplicates. Depth-first search has the advantage of
always having a complete counterexample at the time of discovering an error
state, but it is not guaranteed to find the shallowest error state [6]. Breadth-first
search has the advantage of always finding the shallowest error state, if an error
exists. But if the closed set is only partially stored in the hash table, part of
the counterexample may not be stored in RAM. Because of this, partial storage
methods were originally developed for use with depth-first search. But recon-
struction of the counterexample may be possible in other ways. For example, if

162 P. Lamborn and E.A. Hansen

states that do not fit in the hash table are stored on disk, reconstruction of the
counterexample is still possible.

Depth-First Approaches. Godefroid et al. [7] describe a model checker that
uses depth-first search combined with state caching, which refers to partial stor-
age of the closed set in RAM. When a new state is generated and the hash table
is full, an already stored state is selected for removal to make room for the new
state. Geldenhuys [8] extends this approach with a technique called stratified
caching that caches states in certain ‘strata’ based on distance from the start
state. This makes it possible to bound the number of duplicates generated during
the search.

Breadth-First Search without Generation of Duplicates. Using breadth-
first search, there are methods that delete states from the hash table in such a
way that no duplicates can be generated. These methods exploit special proper-
ties of certain search graphs to determine which states are necessary to cache,
and which can be deleted from the hash table without risking redundant search.
The sweep-line method developed by Kristensen and Mailund exploits ordering
in models where states can be ordered, either with a total ordering [9] or a par-
tial ordering [10]. Parshkevov and Yantchev [11] consider graphs where all states
have the same number of parent states, and remove a state from the hash table
once all its parents have been observed. These methods are domain-dependent
because not all graphs have properties that can be exploited in this way.

Breadth-First Search with Generation of Duplicates. A more general
approach to partial storage of the closed set in breadth-first search allows gen-
eration of duplicate states, but uses various methods to limit the number of
duplicates.

Hash Collisions. Tronci et al. [5] use state caching in a breadth-first search
algorithm for model checking. When two states (s, s′) collide in the hash table,
the older state (s) is removed and the newer state (s′) is remembered. This
replacement strategy tries to keep the most recently-generated states in the hash
table and thus exploits the property of transition locality [4]. Because the state
cache is partial, states may enter the open queue multiple times. Therefore, the
open queue tends to be larger than a standard BFS queue. To accommodate a
larger open queue, Tronci stores the queue on disk and swaps it in and out as
needed.

Layered duplicate detection. Although they do no consider model checking, Zhou
and Hansen [12] describe a partial storage method for breadth-first search called
layered duplicate detection. Instead of storing all of the layers of a breadth-first
search graph in a hash table, they store only the most recent k layers, where k is
determined by the structure of the graph and available memory. Although some
duplicates may be generated, their approach allows a theoretical bound of the
number of duplicates which is d

k , where d is the height of the graph and k is the

Layered Duplicate Detection in External-Memory Model Checking 163

number of layers cached. In this paper, we extend their approach and apply it
to model checking.

2.2 External-Memory Search

Using external memory dramatically increases the maximum number of states
that can be stored for use in duplicate detection, and allows much larger state
spaces to be completely explored. Because it is impractical to implement a hash
table on disk and immediately check whether each newly-generated state is a
duplicate, external-memory search relies on an approach called delayed duplicate
detection (DDD) [1].

External-Memory Bucketing. Bao and Jones [13] found that state compar-
isons, not disk I/O, takes the majority of time in external-memory search. In
a brute-force external-memory search, DDD takes O(mn) time, where m is the
number of states on the disk and n is the number of candidate states to be
checked. One way to improve the efficiency of external-memory model check-
ing is to split the state space into several chunks called buckets. All duplicate
states are assigned to the same bucket, and therefore DDD only needs to be per-
formed within buckets. This reduces the time complexity of DDD to O(Σmini),
where mi is the number of states previously assigned to bucket i and ni is the
number of candidate states in bucket i. In most cases, O(Σmini) % O(mn).
Several different methods of bucketing the states can been employed, including
hash functions [2], heuristics [14], transition locality [15,16,17] and graph struc-
ture [18]. All of these algorithms speed the search by reducing the number of
state comparisons that need to be performed in DDD.

TransitionLocality inExternal-MemoryModelChecking. Someexternal-
memorymodel checkers performDDDononly themost recent states, in an attempt
to exploit transition locality.

Locality in state caching. Hammer and Weber [19] describe an external-memory
search algorithm that takes its cue from partial storage algorithms. The algo-
rithm uses a function to guess which states are less likely to be duplicated and
swaps them to external memory. They tried several selection functions and the
ones that performed best used a state’s age as part of the criteria, with older
states more likely to be sent to disk. However Hammer and Weber’s algorithm
is not a true BFS because of its special treatment of single successor states.

Locality in DDD. Della Penna et al. [15,16,17] extend Tronci’s [5] cached-memory
model checker so that it uses external memory. When a successor state is gener-
ated, it is checked immediately for membership in the hash table. When there is
a hash collision, the oldest of the two colliding states is written to disk. External
memory is partitioned by the order states are written. DDD is usually performed
on only the most recent portion of the states in external memory. Occasionally
a full DDD is performed to removed duplicates missed in the partial DDD. By

164 P. Lamborn and E.A. Hansen

checking the candidate states against only the most recently written parts of the
closed set, Della Penna et al. attempt to exploit transition locality in external
memory.

3 Algorithm

The starting point for our implementation is the Murφ model checker, a domain-
independent tool that takes a description of a model as input and uses breadth-
first search to verify that the model is correct [20]. If an error is found, it returns
an error trace. The Murφ model checker uses breadth-first search to explore the
state-space graph of the model. In the following, we describe an implementation
of external-memory breadth-first search that we implemented in Murφ.

3.1 Breadth-First Search with Layered Duplicate Detection

Figure 1 gives the pseudocode of an implementation of breadth-first search that
uses layered duplicate detection in checking for duplicates in both the hash
table in RAM and on disk. The algorithm partitions the closed set of states
into buckets. The buckets have two indices. The first is a hash function that
distributes states approximately equally among buckets. The second is the depth
of the layer of the breadth-first search graph in which the state first appears. The
second index makes it possible to use layered duplicate detection. As discussed
in Section 2.2, partitioning the closed set into buckets improves the speed of
DDD, although there is some overhead for increased usage of external memory.

In the pseudocode, ClosedRAM denotes the portion of the closed set that
is stored as a hash table in RAM and ClosedDisk denotes the closed set that
is stored on disk. Open denotes the queue of generated states in the current
layer of the search graph waiting to be expanded, that is, waiting to have their
successor states generated. Candidates is the set of newly-generated states in
the next layer of the search graph. Both Open and Candidates may be too large
to fit in RAM, in which case they are partially stored on disk. Open is read
sequentially from disk and Candidates is written sequentially to disk, and so
storing them partially on disk is no problem. Since duplicate detection on disk
is delayed, Candidates typically contains duplicates that are removed later.

The algorithm proceeds as follows. While the search graph has not yet been
fully explored (line 8), it loops through all buckets (line 9) and through all
states in each queue of the current layer of the search graph (line 10). For each
dequeued state, its successor states are generated (line 12). If RAM is full, the
shallowest layer of states in the hash table is deleted (line 16). The reason for
this is that, assuming transition locality, states generated earlier are less likely
to have duplicates in the layer of the search graph currently being generated.
When layers are large, however, it is sometimes necessary to delete states from
the hash table that are in the layer of the search graph that is currently being
generated (line 17). If a generated state is not in the hash table, it is added
to both the hash table and to the candidate list (line 19). If a violation of the

Layered Duplicate Detection in External-Memory Model Checking 165

1 externalBreadthFirstSearch(startState, ErrorStates)
2 depth := 0
3 cacheStartingLayer := 0
4 s := startState
5 ClosedRAM[hash(s)][depth].add(s)
6 ClosedDisk[hash(s)][depth].add(s)
7 Open[hash(s)][depth].enqueue(s)
8 while(¬∀b Open[b][depth].empty())
9 for(each bucket b)
10 while(¬Open[b][depth].empty())
11 s := Open[b][depth].dequeue()
12 for(each successor s′ of s)
13 if(s′ ∈ ErrorStates) return counterExampleReconstruction(s′)

;If RAM is full, delete shallowest layer of state cache
14 if(RAM FULL())
15 for (each bucket b)
16 delete ClosedRAM[b][cacheStartingLayer]
17 if(depth + 1 > cacheStartingLayer) cacheStartingLayer ++

;If node is not in state cache, add to state cache and disk
18 if(∀depth+1

i=cacheStartingLayer s′ �∈ ClosedRAM[hash(s′)][i])
19 ClosedRAM[hash(s′)][depth+1].add(s′)
20 Candidates[hash(s′)][depth+1].add(s′)
21 depth++
22 removeDuplicatesOnDisk(depth, cacheStartingLayer)

23 return Model is valid

Fig. 1. Pseudocode for external-memory breadth-first search algorithm that uses layered
duplicate detection to check for duplicates of states stored in a hash table or disk

property is found, the counterexample is returned (line 13). After all the nodes in
the currently layer of the search graph are expanded, delayed duplicate detection
is performed to remove duplicate states from Candidates (line 22).

3.2 Delayed Duplicate Detection

The pseudocode of a procedure that performs delayed duplicate detection to
remove duplicates of states already stored on disk is shown in Figure 2. The
procedure removes states from Candidates that are duplicates of other states
in Candidates (line 11) or duplicates of states that are already stored on disk.
States that are not detected as duplicates are put into the Open queue and are
also stored in ClosedDisk (line 12). The pseudocode of a Boolean function that
checks whether a state is a duplicate of a state already stored on disk is given
in Figure 3. The number of previous layers checked for duplicates is controlled
by the parameter L.

Delayed duplicate detection is the most time-consuming part of the search al-
gorithm, and takes even more time than disk I/O, which is notoriously slow [13].
One way to reduce the time it takes is to sort all states stored in external mem-
ory. The complexity of an external sort is O(n ∗ (1 + #logB−1# n

B $$)), where n is

166 P. Lamborn and E.A. Hansen

1 removeDuplicatesOnDisk(depth, cacheStartingLayer)
2 for (all buckets b)
3 l := cacheStartingLayer - L
4 while (l < cacheStartingLayer)
5 offset[l]=0
6 l + +
7 sort Candidates[b][depth]
8 e := 0
9 while (e < Candidates[b][depth].size())

;Next line skips duplicate nodes in Candidates
10 if(Candidates[b][depth].element(e) �=Candidates[b][depth].element(e − 1))

;Next line skips duplicates of nodes already stored on disk
11 if(¬ inPreviousLayers(Candidates[b][depth].element(e), b, offset)
12 Open[b][depth].enqueue(Candidates[b][depth].element(e))
13 ClosedDisk[b][depth].add(s)
14 e + +

15 delete Candidates[b][depth]

Fig. 2. Pseudocode for procedure that removes duplicate nodes on disk using delayed
duplicate detection

1 boolean inPreviousLayers(s, b, offset)
2 layer := cacheStartingLayer - 1
3 while (layer > cacheStartingLayer - L)
4 while s < ClosedDisk[b][layer].element(offset[layer])
5 offset[layer] ++
6 if s == ClosedDisk[b][layer].element(offset[layer])
7 return true
8 layer - -;

9 return false

Fig. 3. Pseudocode for function that checks whether a state is stored in the L most
recent layers in external memory

the number of candidate states, m is the number of states in the bucket and B
is the number of states cached by the external sort. But when the buckets are
sorted, DDD takes O(n + m) time instead of O(nm).

Sorting the states in each bucket makes DDD more efficient for three reasons.
First, all duplicates within a bucket are stored consecutively once sorted. Thus,
duplicates in the current bucket can be found by simply comparing a state
to its neighbors. (See Figure 2 line 10.) Second, when comparing Candidates
against previous layers one state at a time (Figure 3 lines 4 and 6), if a state is
reached that sorts greater than the candidate state, we know the candidate has
no match in that layer and do not have to check any more states in that layer.
Third, because Candidates is sorted, the next candidate state checked will sort
greater than the current candidate. Thus we can resume checking the layer from
the same location, recorded in the offset array (line 5), rather than starting at

Layered Duplicate Detection in External-Memory Model Checking 167

the beginning of the layer. In the delayed duplicate detection procedure, we load
a state from external memory into RAM no more than once.

3.3 Counterexample Reconstruction

The pseudocode for reconstructing an error trace is given in Figure 4. In a stan-
dard RAM-only search, the data structure for each state includes a pointer back to
its parent state, that is, the state that generated it. Reconstructing an error trace
is simply a matter of tracing these pointers back to the start state. In external-
memory search, some states on the error trace may no longer be in RAM. This
makes reconstructing the error trace more complicated. Instead of including a par-
ent pointer in the data structure for each state, we include two items of informa-
tion: the parent’s hash, which determines which bucket the parent is in, and the
parent’s location in the bucket (line 8). With these two items of information, we
can find the parent state whether it is located in RAM or disk.

1 counterexampleReconstruction(error)
2 trace:=∅
3 traceDepth:=depth
4 cur:=error
5 while(traceDepth>cacheStartingLayer)
6 trace:=trace & cur
7 traceDepth - -
8 cur:=ClosedRAM[cur.parentHash][traceDepth].element(cur.parentPosition)
9 while(traceDepth>0)
10 trace:=trace & cur
11 traceDepth - -
12 cur:=ClosedDisk[cur.parentHash][traceDepth].element(cur.parentPosition)
13 trace:=trace & cur

14 return trace

Fig. 4. Pseudocode for procedure that reconstructs error trace

3.4 Termination

Because the search is breadth-first, if an error is found, the error trace is guaran-
teed to be the shortest path to the error state. If an error exists, our algorithm
will always find it. If no error is found, the search terminates when there are
no more states of the graph to explore, i.e., the open queue is empty (Figure 1,
line 8). If the search terminates in this way, the model is verified. However, when
only the most recent layers are checked for duplicates, the search is no longer
guaranteed to terminate with an empty open queue, even if the graph is finite. It
is possible, when no error states exist, for the search to continue indefinitely be-
cause missing duplicate states result in regeneration of parts of the search space.
Thus, our algorithm, like many partial-memory algorithms, is not guaranteed to
terminate. Answers produced are always correct, but in some cases no answer
may be produced.

168 P. Lamborn and E.A. Hansen

This suggests another way to detect termination and verify a model. If the
model is verified for a depth that is equal to or greater than the diameter of the
graph, called the completeness threshold, verification is complete. This method of
detecting termination is similar to that used in bounded model checking, which
uses satisfiability testing to verify that a model does not have any errors up to
some depth k [21]. Various methods for determining a completeness threshold
have been explored in the literature on bounded model checking, and can be
applied in our layered approach.

4 Results and Analysis

We implemented layered duplicate detection in the Murφ model checker, which
uses a state cache to immediately eliminate as many duplicates as possible and
uses delayed duplicate detection to eventually eliminate duplicates that are writ-
ten to disk. Our experiments were performed on a 3.0 GHz dual-core Xeon pro-
cessor with two gigabytes of RAM and one terabyte of disk storage.

Table 1. Performance results using layered delayed duplicate detection, with a maxi-
mum of 50 layers stored on disk. The column Num states shows the number of unique
states of the model that are visited during the search. The column Num layers shows
the depth of the search. The column RAM records the number of duplicates elimi-
nated in RAM, and the column DDD shows the number of duplicates written tem-
porarily to disk and later eliminated by DDD. The column Missed shows the number
of duplicates missed by our algorithm because not all layers of the search graph are
stored on disk. The column BFS shows the CPU time for the search, and the col-
umn Trace shows the CPU time to reconstruct the error trace. Time is reported as
Days:Hours:Minutes:Seconds. The column Disk shows the amount of external memory
required to store the complete state space, reported in gigabytes.

Num Num Duplicates Time Disk
Model States Layers RAM DDD Missed BFS Trace GB

Verified

newlist 80,109,359 110 346,175,576 116,341,341 288,695 14:35:00 N/A 22
ldash 254,935 64 2,391,696 7 2 3:28:42 N/A 41
directory 1,071,401,426 113 479,609,483 78,501,871 28 1:22:16:29 N/A 279

Error Detected

adashe 2,156,280 16 3,329,518 169,981 0 4:02:17 7:39 5
arbiter 90,913,223 31 378,993,079 64,426,284 0 6:17:41 1 26

The results reported in Table 1 show the performance of the algorithm in
verifying five models. Three models were verified. For the other two models, an
error was found and the error trace was returned. For all of the models except
ldash, the largest layer of the search graph exceeded RAM capacity; this means
that the state cache contained less than one layer at times. A maximum of 50
layers of the search graph were stored on disk at a time to check for duplicates.

Layered Duplicate Detection in External-Memory Model Checking 169

Table 1 shows the number of unique states of the model. Because the algorithm
checks a bounded number of layers for duplicates, and thus could miss some
duplicates, the number of unique states of the model was determined by a post-
processing step.

Despite often caching less than a layer in RAM, our results show that more
duplicates are detected in RAM than there are unique states in the model. Fewer
duplicates are eliminated in DDD; this is good, since DDD is relatively expensive.
The number of duplicates missed because not all layers are stored on disk is
typically small, and much less than the number eliminated by DDD. We report
the amount of time taken by the algorithm, broken down by how much time was
spent on the search and how much time was spent reconstructing the error trace
if an error state was discovered. Counterexample reconstruction usually takes a
small portion of the total time. The counterexample reconstruction for arbiter
is unusually fast; in this case, the error trace is sorted near the beginning of
the disk files (i.e., the buckets in ClosedDisk). Finally, we report the amount of
gigabytes required to completely store the state space. While all these models
exceed the RAM we have available, the directory model is particularly large,
requiring 279 GB to completely store the state space.

4.1 Effective State Caching Saves Time and Space

Having an effective state cache saves both time and space. Table 2 shows that
without a state cache, there is a large increase in the number of duplicates written
temporarily to disk and eliminated during DDD, as well as a corresponding
increase in the running time of the model checker. In addition, writing these
duplicates to disk increases the amount of disk storage required by the algorithm.

Table 2. Performance with and without a layered state cache. The column Time shows
the overall time to perform the search, and is reported in Hours:Minutes:Seconds. The
column Delayed Duplicates shows the number of duplicates eliminated during DDD.

Delayed
Model Cache Time Duplicates

ldash state Cache 1:02:42 7
No Cache 9:03:25 1,536,918

adashe state Cache 4:02:17 172,184
No Cache 6:12:45 3,459,785

arbiter state Cache 6:17:41 66,980,652
No Cache 22:15:19 413,937,369

4.2 Layer Sizes

Figure 5 shows the size of each layer of the search graph for the directory model.
As Pelánek [4] earlier observed, the distribution of layers usually has a near bell
curve shape, with most states in the middle layers. For this model, 40% of the
states are in layers 62 to 72, out of a total of 113 layers. In fact, layer 66 alone

170 P. Lamborn and E.A. Hansen

Fig. 5. The number of states at each depth of the directory model

contains almost 5% of the states in the model. Although disk provides much
more storage than internal memory, it is also limited. In our experiments, we
have not yet reached the limits of our available disk storage, but increasingly
large models will test these limits. For example, Korf and Schultze [3] describe
a complete breadth-first search of the Fifteen Puzzle that requires 1.4 terabytes
of disk just to store the largest single layer of the graph. When model checking
considers problems that approach this size, it will become important to conserve
external memory. One way to economize in the use of external memory is by
using our partial DDD algorithm. Since our algorithm only checks a subset of
all previous layers during DDD, it would use less disk storage if it only keeps
this subset of layers on disk.

4.3 Transition Locality in Partial Delayed Duplicate Detection

Table 3 shows the result of running our algorithm on three large models and
varying the number of layers checked in DDD. If too few layers are checked,
large numbers of duplicates are never eliminated, increasing the running time of
the algorithm. It is possible to check more layers than necessary. This usually
doesn’t increase the running time of the algorithm much since most duplicates
are caught before checking the older layers. For these models, the best space-
time performance is achieved by checking only a bounded number of layers, but
the optimal number of layers is model-dependent and cannot be known a priori.

Layered Duplicate Detection in External-Memory Model Checking 171

Table 3. Tradeoffs for checking a bounded number of previous layers for duplicates, as
the number of layers is varied. The column Layers gives the number of previous layers
used in DDD. The column CPU Time gives the amount of time the algorithm took,
reported in Days:Hours:Minutes:Seconds. The column Disk Storage gives the maximum
amount of external memory required for the algorithm to complete the search, reported
in gigabytes.

Layers CPU Time Disk Storage

adashe

15 4:02:17 5.00
10 3:48:25 4.99
5 3:53:46 4.56
0 4:04:00 2.04

ldash

46 1:07:15 40.88
26 1:03:51 37.58
10 1:03:34 20.50
8 1:01:43 17.09
6 1:11:05 13.39
5 1:12:46 11.41
4 2:21:06 9.44
2 >8:34:22 >6.23

newlist

88 19:22:47 22.00
66 19:15:24 21.96
44 19:51:39 21.70
22 >2:19:58:30 >8.41

4.4 Model Descriptions

All of our models are based on complex protocols. The following explains the
protocols used to create the models.

1 arbiter : model of a mutual exclusion algorithm with an arbiter that allocates
resources [22]. We used a model with 13 resources.

2 dash: model of the Dash Communication Protocol [23]. This protocol has
two variant models.
– adashe: abstraction of the dash protocol. This variant has been changed
to include error states. Adashe was tested on a model that had 1 cluster with
memory, 2 clusters without memory, 2 address in the memory cluster, and
2 value types to be saved.
– ldash: concrete model of the dash protocol. We tested a model with 1
cluster with memory, 4 clusters without memory, 1 address per cluster could
be locked, with message buffer of size 30.

3 directory: model of a directory-based cache protocol [24]. This is a model
created by IBM and used for evaluating the protocol for use in servers. We
tested a model with 14 clients.

172 P. Lamborn and E.A. Hansen

4 newlist : protocol for a distributed linked list that covers maintaining co-
herency in the list and controlling adjustments as the list is sorted. We used
a system with 8 distributed nodes.

4.5 Theoretical Results

We next prove some bounds on the number of duplicates that can be generated
when not all all layers of the search graph are stored and checked for duplicates.
First, we bound the number of duplicates that are never eliminated in the search.
We call these redundant states. Then we bound the number of duplicates that
will be eliminated in delayed duplicate detection. In our experiments, observed
performance is much better than these worst-case bounds.

Bounds on Redundant States. Zhou and Hansen [12] give some conditions
under which no duplicates will be generated, using layered duplicate detection.
In the worst-case, the number of times a state can be regenerated is bounded by
the depth of the search (d) and the number of layers checked in DDD (L), and
no state can be duplicated more than d/L times.

Theorem 1. In layered external memory search, the worst-case number of times
a state can be regenerated is bounded by d

L .

Proof. Let L ≥ 1 be the number of layers checked by the algorithm. No duplicates
can exist in these L layers. New states are checked against those L layers before
being inserted into the open list. The least layers a duplicate state s can reappear
is at layer g∗(s)+L where g∗(s) is the first layer at which state s is encountered.
State s may then appear every L layers for the rest of the search. If the depth of
the search is d, the state s can appear a maximum of j times where g∗(s)+j∗L ≤
d. Thus, state s may recur at most d

L times, which assumes the state appears in
layer 0 and every L layer thereafter.

Theorem 2. In layered breadth-first search, the worst-case number of number
of states that can be regenerated is bounded by S∗d

L .

Proof. This is a small step from Theorem 1. Since a state s can be duplicated
no more than d

L times and there are S states, no more than S∗d
L states can be

searched. Since searching S∗d
L states would mean that every state in the graph

is duplicated the maximum times allowed by the bound in Theorem 1.

Note as well if L = d then S states are searched, i.e. each state is searched once.
Since L = d in a traditional BFS this result is appropriate.

Theorem 3. In layered breadth-first search, the worst-case redundant work fac-
tor is bounded by d

L .

Proof. The redundant work factor is a metric used by Geldenhuys [8]. The metric
is the ratio of reported states to actual states. Actual states are S. Reported
states are bounded by Theorem 2 to S∗d

L . Thus, the redundant work factor is

bounded by
S∗d

L

S which reduces to d
L .

Layered Duplicate Detection in External-Memory Model Checking 173

Therefore, according to Theorem 3, if L = d, the redundant work factor is 1,
which is, again, what we would expect from a traditional search. In the worst-
case L = 1 making rwf = d.

Bounds on Delayed Duplicates. Temporary duplicates are duplicates that
are not eliminated immediately in state cache, but are eventually eliminated
during DDD. Each temporary duplicate adds to the overhead of our search.
We can bound the number of temporary duplicates by similar reasoning as in
Theorem 1. We simply switch the number of layers checked in DDD (L) for the
number of layers cached in RAM (k).

Theorem 4. In layered external memory search, the worst-case number of times
a state can be temporally duplicated is bounded by d

k .

Proof. If k is the number of layers cached by the algorithm. No duplicates will be
temporarily missed in these k layers. New states will be checked against those k
layers immediately. When a layer is larger than our state cache, i.e. k < 1, states
may be repeated more than once per layer. Still, the least layers a duplicate
state s can reappear is at layer g∗(s) + k where g∗(s) is the first layer at which
state s is encountered. State s may then appear every k layers for the rest of the
search. If the depth of the search is d, the state s can appear a maximum of j
times where g∗(s) + j ∗ k ≤ d. Thus, state s may recur at most d

k times, which
assumes the state appears in layer 0 and every k layer thereafter. This bound is
applicable whether k ≥ 1 or 1 > k.

Theorem 5. In layered breadth-first search, the worst-case number of number
of states that can be temporary duplicates is bounded by S∗d

k .

Proof. This is a small step from Theorem 4. Since a state s can be a temporary
duplicate no more than d

k times and there are S states, no more than S∗d
k states

can be seen during the search. Since S∗d
k temporary duplicates states would mean

that every state in the graph is duplicated the maximum times allowed by the
bound in Theorem 4.

5 Conclusion and Future Work

External layered duplicate detection has the potential to improve on previous
work in several ways. First, layered duplicate detection is easy to implement in
a domain-independent way. Second, the layered framework allows us to exploit
transition locality in the hash table. The vast majority of duplicates are identified
instantly in RAM because the most recent states are cached in the hash table.
This is especially true when only a small portion of the state space is cached.
For our largest model, directory, we eliminated 86% of duplicates in RAM while
caching approximately 1% of the state space. Transition locality is clearly a good
metric for caching. Third, transition locality can also be exploited in external
memory. In external memory we can still rely on most duplicates occurring in

174 P. Lamborn and E.A. Hansen

the most recent layers. If we only perform DDD on the L most recent layers,
we can save large amounts of space in external memory while insignificantly
increasing time requirements. In the case of ldash, we require approximately one
quarter of the disk space needed to store the entire state space, with a delay of
11 minutes, out of a search taking three and a half hours. Fourth, we generate
several worst-case linear bounds on the amount of redundant work performed
by our algorithm. Results are well below the bound. Finally, a layered approach
lends itself to a speedier counterexample reconstruction.

Besides testing this approach on larger and more varied models, we hope to
eventually extend it in several ways. We pointed out that only the L layers
checked in DDD must be retained in our search. But up to this point we do not
delete old layers because they are used during counterexample reconstruction.
We will extend our tool to allow complete search of graphs that do not fit on
disk. This will include reconstructing parts of the counter example that have
been removed from disk using a divide-and-conquer method [12].

We would also like to use a better hashing function. Jabbar and Edelkamp [14]
use a hashing function that limits a bucket’s successors to a few other buckets.
This makes it easier to parallelize the search, since completed buckets can be
refined by delayed duplicate detection in parallel with bucket expansions. Their
hash is domain-dependent, however. We would like a hash that limits the number
of successor buckets but works in a domain-independent way.

Another valuable addition would be to bound the diameter of the graphs. This
bound could be used to prune the search deeper than the bound and guarantee
termination of the algorithm.

A final addition would be a system for dynamically varying the number of
layers checked in DDD. Since the ideal number of layers checked differs for
every model, it would be desirable to determine the number of layers to check
automatically. One possibility is to vary the number of layers checked based on
the maximal back edge length observed.

References

1. Stern, U., Dill, D.L.: Using magnetic disk instead of main memory in the Murφ
verifier. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 172–183.
Springer, Heidelberg (1998)

2. Bao, T., Jones, M.: Time-efficient model checking with magnetic disk. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 526–540. Springer,
Heidelberg (2005)

3. Korf, R., Schultze, P.: Large-scale parallel breadth-first search. In: Proceedings of
the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 1380–1385
(2005)

4. Pelánek, R.: Typical structural properties of state spaces. In: [25], pp. 5–22

5. Tronci, E., Penna, G.D., Intrigila, B., Zilli, M.V.: Exploiting transition locality
in automatic verification. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001.
LNCS, vol. 2144, pp. 259–274. Springer, Heidelberg (2001)

Layered Duplicate Detection in External-Memory Model Checking 175

6. Gastin, P., Moro, P.: Minimal counterexample generation for spin. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 24–38. Springer, Heidelberg
(2007)

7. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-space caching revisited. Formal
Methods in System Design 7(3), 227–241 (1995)

8. Geldenhuys, J.: State caching reconsidered. In: [25], pp. 23–38
9. Kristensen, L.M., Mailund, T.: A compositional sweep-line state space exploration

method. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp.
327–343. Springer, Heidelberg (2002)

10. Kristensen, L.M., Mailund, T.: A generalised sweep-line method for safety prop-
erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549–567. Springer, Heidelberg (2002)

11. Parashkevov, A.N., Yantchev, J.: Space efficient reachability analysis through use
of pseudo-root states. In: Tools and Algorithms for Construction and Analysis of
Systems, pp. 50–64 (1997)

12. Zhou, R., Hansen, E.: Breadth-first heuristic search. Artificial Intelligence 170,
385–408 (2006)

13. Bao, T.: Empirical comparison of algorithms for model checking with magnetic
disk. Technical Report VV-0402, Department of Computer Science, Brigham Young
University (2004)

14. Jabbar, S., Edelkamp, S.: Parallel external directed model checking with linear
I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
237–251. Springer, Heidelberg (2005)

15. Penna, G.D., Intrigila, B., Tronci, E., Zilli, M.V.: Exploiting transition locality in
the disk based Murφ verifier. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD
2002. LNCS, vol. 2517, pp. 202–219. Springer, Heidelberg (2002)

16. Penna, G.D., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Integrating RAM and
disk based verification within the Murphi verifier. In: Geist, D., Tronci, E. (eds.)
CHARME 2003. LNCS, vol. 2860, pp. 277–282. Springer, Heidelberg (2003)

17. Penna, G.D., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Exploiting transition
locality in automatic verification of finite-state concurrent systems. International
Journal on Software Tools for Technology Transfer 6(4), 320–341 (2004)

18. Zhou, R., Hansen, E.: Structured duplicate detection in external-memory graph
search. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI 2004), San Jose, CA, pp. 683–688.
AAAI Press / MIT Press (2004)

19. Hammer, M., Weber, M.: To Store or not to Store Reloaded: Reclaiming memory
on demand. In: 11th International Workshop on Formal Methods for Industrial
Critical Systems. Springer, Heidelberg (2006)

20. Dill, D.L.: The Murφ verification system. In: Alur, R., Henzinger, T. (eds.) CAV
1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

21. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods in System Design 19(1), 7–34 (2001)

22. Kumar, R., Mercer, E.G.: Load balancing parallel explicit state model checking.
Electr. Notes Theor. Comput. Sci. 128(3), 19–34 (2005)

23. Lenoski, D.: DASH Prototype System. PhD thesis, Stanford University (1992)
24. Emerson, A.E., German, S., Havlicek, J., Venkataramani, A.: Model checking a

parameterized directory-based cache protocol (2002)
25. Graf, S., Mounier, L. (eds.): SPIN 2004. LNCS, vol. 2989. Springer, Heidelberg

(2004)

Dependency Analysis for Control Flow Cycles in

Reactive Communicating Processes

Stefan Leue1, Alin Ştefănescu2,�, and Wei Wei1

1 Department of Computer and Information Science
University of Konstanz

D-78457 Konstanz, Germany
{Stefan.Leue,Wei.Wei}@uni-konstanz.de

2 SAP Research CEC Darmstadt
Bleichstr. 8, D-64283 Darmstadt, Germany

alin.stefanescu@sap.com

Abstract. The execution of a reactive system amounts to the repeti-
tions of executions of control flow cycles in the component processes of
the system. The way in which cycle executions are combined is not ar-
bitrary since cycles may depend on or exclude one another. We believe
that the information of such dependencies is important to the design,
understanding, and verification of reactive systems. In this paper, we for-
mally define the concept of a cycle dependency, and propose several static
analysis methods to discover such dependencies. We have implemented
several strategies for computing cycle dependencies and compared their
performance with realistic models of considerable size. It is also shown
how the detection of accurate dependencies is used to improve a livelock
freedom analysis that we developed previously.

1 Introduction

The main purpose of a concurrent reactive system is to maintain an ongoing
interaction with its environment [15]. The execution of the system is therefore
expected to last forever. Since each component process in the system has a finite
control structure, any infinite execution of the system is essentially an infinite
repetition of a certain set of control flow cycles in the concurrent processes that
form the system. The way in which cycle executions are combined is certainly not
arbitrary. For instance, the repetition of one cycle may rely on the repetitions
of some other cycles; and the execution of one cycle may also eliminate the
possibility of executing some other cycles.

We believe that the information of such cycle dependencies is important to the
design, understanding, and verification of reactive systems. As one example, the
knowledge of cycle dependencies may reveal potential design errors. In a reactive
system, let us suppose that the repetition of a control flow cycle C relies on the
repetitions of other cycles. When we expect C to be executed infinitely often,

� The work was done while this author was working at the University of Konstanz.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 176–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dependency Analysis for Control Flow Cycles 177

we may want to check statically whether there is any other cycle in the system
on which C relies. The fact that no such cycles can actually be found hints at
an incompleteness in the design or implementation of the system.

The knowledge of cycle dependencies is also useful in the verification of con-
current reactive systems. In our precursory work, we proposed an efficient system
verification framework based on integer linear program (ILP) solving [13,12]. Our
verification methods abstract the original verification problem into an ILP prob-
lem that describes a necessary condition for the violation of the property under
scrutiny. Any solution to the ILP problem corresponds to a counterexample in
the form of a set of cycles. A counterexample is spurious if it is impossible to
repeat the cycles in the counterexample forever without other cycles also being
repeated infinitely often. Consequently, the dependency among cycles stands at
the very core of the refinement procedure based on the detection of spurious
counterexamples in [14,12].

The central contribution of this paper is a formal framework capturing a
notion of dependency between the control flow cycles of the concurrent processes.
We also inspect different causes of dependencies, and develop techniques for
discovering dependencies with respect to each cause. In this paper we choose
Promela [9] as modeling language for the systems that we analyze. This choice
is motivated by convenience since a large number of Promela models are available
in the public domain [21] and some of the features of the SPIN tool environment,
which interprets Promela, greatly facilitate our static analysis. We conjecture
that applying our analysis ideas to other modeling and programming languages
based on communicating finite state machines, such as UML-RT, could easily be
accomplished.

Related Work. To the best of our knowledge, there is currently no work address-
ing control flow cycle dependencies. Control flow graphs of general programs were
extensively studied in the area of static program analysis [20] with applications,
e.g., in the area of compiler optimization. Slicing of programs [25,7,18,23] checks
dependences between statements but not cycles. The “may happen in paral-
lel” [19] and “non-concurrency” [16] analyses also consider dependences between
statements. Finally, the INCA verification framework [4,24] studies the relation
between acyclic paths and control flow cycles but not relations among cycles.
Moreover, the above techniques are applied to either sequential programs or syn-
chronous communication settings, while we also address an asynchronous setting
where exchanging messages via buffers is the dominant way of communication.

Structure of the Paper. Section 2 introduces the Promela modeling language, de-
fine cycles and some related concepts. Section 3 defines the concept of
cycle dependencies. We propose in Sections 4 and 5 several static analysis meth-
ods for cycle dependency discovery. Section 6 briefly shows how the discov-
ery of cycle dependencies can help improve the precision of a livelock freedom
test. Section 7 reports the experimental results, before Section 8 concludes the
paper. All the proofs of the theoretical results of the paper can be found in
Appendix A.

178 S. Leue, A. Ştefănescu, and W. Wei

2 Preliminaries

Promela. Promela is the input language of the SPIN explicit state model checker
[9]. It has been successfully used for the modeling and analysis of many concur-
rent systems [10,6]. The Promela language supports asynchronous communi-
cation as well as synchronous rendez-vous communication and synchronization
via shared variables. The subset of the Promela language that we consider in-
cludes the definition of concurrently running processes (“proctype”), commu-
nication channels (“chan” declarations), message sending (“!”) and receiving
(“?”), assignments, condition statements, nondeterministic branching (“if ...
fi”), looping (“do ... od”), and arithmetics. For the sake of simplicity we do
not consider arrays and structured data types in this paper.

1 active proctype client()
2 int x = 0;
3 do
4 :: (x < 3) -> toServer!request; x++;
5 :: (x == 3) ->
6 fromServer?reply; x--;
7 od
8
9 active proctype server()
10 do
11 :: toServer?request -> fromServer!reply;
12 od

x = 0
(x < 3)

request
fromServer?toServer!

reply

x++

x−−

toServer?
request

fromServer!
reply

proctype client()

proctype server()

(x == 3)

Fig. 1. An example Promela model and its control flow graphs

Figure 1 shows a simple Promela model consisting of two processes: client
and server, whose behavior is described by the sequential Promela code within
the respective proctype definition. The process client may send a request
message to the buffer toServer if x < 3 (Line 4). Otherwise, it waits until
a reply message is available in the buffer fromServer and then receives the
message (Line 6). A condition statement such as (x < 3) is a boolean expression
enclosed in parentheses, which acts as a guard to the subsequent statements.
It is executable if and only if the enclosed expression evaluates to true. We
can construct a control flow graph from each of the proctype definitions (see
Figure 1). Each transition corresponds to one statement in the code, and its
source state and target state respectively denote the control points before and
after the execution of the statement.

Control flow cycles. We define a control flow cycle (or simply cycle) in a control
flow graph as a sequence of consecutive transitions in the graph such that the
source state of the first transition in the sequence is the same as the target state
of the last transition. A cycle is elementary (or simple) if no two transitions
in the defining sequence of the cycle have a same source state. Informally, an
elementary cycle cannot be decomposed further into smaller cycles. In the control
flow graph of the process client in Figure 1, there are two elementary cycles.

Dependency Analysis for Control Flow Cycles 179

Even though a finite control flow graph may contain infinitely many cycles, the
number of elementary cycles is always finite and in the worst case exponential in
the number of transitions. Since any non-elementary cycle can be decomposed
into elementary cycles, our analysis considers only elementary cycles. Unless
otherwise specified, all the cycles mentioned in the following are elementary.

If two cycles share states, then they are neighbors of each other. Any such
shared state is an exit state of the cycles that contain it, because one can exit
one cycle at that state and enter another cycle. The two cycles in the process
client in Figure 1 are neighbors sharing one exit state.

Cycle executions. An infinite run of a Promela model amounts to the repeated
executions of cycles in some processes of the model. For an infinite run r of a
Promela model, let r/p denote the projection of r on the set of transitions in a
process p. Thus, r/p corresponds to the local execution of p in r. Any r/p can
be decomposed into two parts: (1) an acyclic path from the initial state, and
(2) repeated executions of cycles. Given a cycle c in p, one execution of c in
r/p may be interrupted by the executions of other cycles in p: Some part of c
is executed until some exit state s is reached where it starts to execute other
cycles. The execution of c is later resumed from s after the executions of those
interrupting cycles are completed. Since r is an infinite run, at least one cycle in
the model is repeated infinitely often. We denote by IRC (r) (infinitely repeated
cycles) the set of cycles that are executed infinitely often in r. For a process p,
IRC (r/p) is the subset of IRC (r) consisting of only cycles in p. It is easy to see
that IRC (r/p) is either empty or forms a strongly connected subgraph of the
control flow graph of p.

3 Cycle Dependencies

We now define the concept of cycle dependencies. Intuitively, a cycle c depends
on a set of cycles S if the infinite execution of c must be accompanied by the
infinite executions of some cycles in S.

Definition 1. Given a Promela model, a cycle c and a set of cycles S in the
model, we call the pair (c, S) a cycle dependency if they satisfy the following
conditions: a) c /∈ S; and b) for any infinite run r of the model where c ∈ IRC (r),
there exists a cycle c′ ∈ S such that c′ ∈ IRC (r). In this case, we say that c
depends on S.

In the above definition, if all the cycles in S are in the same process as c is, then
(c, S) is a local dependency. Otherwise, (c, S) is a global dependency. Moreover,
if c does not depend on any subset of S, then we say that (c, S) is a minimal
dependency. In the model in Figure 1, we denote by cl (resp. cr) the left (resp.
right) cycle in the process client and by cs the only cycle in the process server.
(cr, {cl, cs}) is a cycle dependency, while (cr, {cl}) and (cr, {cs}) are two minimal
cycle dependencies. In particular, (cr, {cl}) is a local dependency, and (cr, {cs})
is a global dependency.

180 S. Leue, A. Ştefănescu, and W. Wei

If we interpret all message buffers in a Promela model to have only finite
capacities, then the Promela model possesses a finite global state space. In this
case, we show as follows that it is decidable whether (c, S) is a cycle depen-
dency: We construct the global state space for the model and then look for any
elementary of non-elementary cycle in the global state space that contains c but
no cycles from S. If no such global cycles exist, then (c, S) is a cycle depen-
dency. However, we are more interested in infinite state models. If we assume
that buffers in Promela models have infinite capacities and variables may have
infinite domains such as integer variables, then a Promela model may have an
infinite global state space, for which we show in the following theorem that the
above problem becomes undecidable.

Theorem 1. Given a cycle c and a set S of cycles, it is undecidable in general
whether (c, S) is a cycle dependency.

3.1 The Causes of Cycle Dependencies

The root cause for cycle dependencies lies in the executability of Promela state-
ments. Given a cycle, if the executability of every statement along the cycle is
unconditional, then the cycle can be repeated without interruption forever once
the cycle is entered. Such a cycle does not depend on any other cycles. On the
contrary, consider a cycle c that contains a statement s whose executability is
conditional. If s cannot be continuously enabled forever by only repeating c,
then some other cycles need to be executed in order to re-enable s by, e.g., mod-
ifying the values of some variables, sending a message etc. In Promela there are
two kinds of statements with conditional executability: condition statements and
message receiving statements, when we take the assumption that message buffers
have unbounded capacities and message sending statements are therefore always
enabled. In the following we explain how cycle dependencies may be imposed by
these two kinds of statements.

Condition statements. Consider the right cycle cr in the process client in
Figure 1. cr contains a condition statement (x == 3). The condition x = 3
cannot remain true after cr is executed because x is decremented by 1 in the
cycle. Then, cr can be repeated infinitely often only if the left cycle cl is also
repeated infinitely often to modify the value of x such that x can always acquire
the value 3 again. This is one example that a cycle is terminating on a condition
statement along the cycle. Since we focus on discovering cycle dependencies in
this paper, it is out of scope how to determine whether a cycle is terminating,
which is a well-known undecidable problem. In [14] we proposed an incomplete
procedure to prove termination for control flow cycles. There are also many ex-
isting techniques [22,3,5,1] to prove termination for certain kinds of loops in
programs, which can be adapted to prove termination for control flow cycles. In
Section 4 we will show how to determine cycle dependencies from a condition
statement on which a cycle is terminating.

Dependency Analysis for Control Flow Cycles 181

Message receiving statements. The above mentioned cycle cr contains a mes-
sage receiving statement fromServer?reply. Thus, the cycle cs sending reply
messages has to be repeated infinitely often when cr is to be repeated infinitely
often. In Section 5 we will present a method to determine cycle dependencies
from message receiving statements, which are usually global dependencies.

4 Discovering Dependencies from Condition Statements

We show some types of cycle dependencies imposed by condition statements on
which a cycle is terminating. In order to derive them, we need to discriminate
between different ways in which the variables in a condition statement are mod-
ified in the cycle. A variable is local if its value can be referenced and modified
only by one process. Otherwise, it is a global variable. However, the runtime
value of a local variable may still depend on the executions of other processes.
For instance, given a local variable x, if there is an assignment x = e(y) where
e is an arithmetic expression containing a global variable y, then the runtime
value of x may depend on how y is modified in other processes.

Definition 2. For a cycle c and a variable x, x is globally modified in c if one of
the following is satisfied: a) x is global, or b) there is a message receiving statement
b?msg(x1,...,xn) in c where x is some xi, or c) there is an assignment x = e(y)
in c where y is globally modified in c. Otherwise, x is locally modified in c.

Note that in the above definition we disregard the dependency of the runtime
value of a local variable on a condition statement. The reason is that a control
flow cycle contains only one branch of a condition statement. Therefore, the
impact of the condition statement is fixed in the cycle. Note that we are only
interested in how a variable is modified inside a particular cycle when the cycle
is repeated without interruption.

For a boolean condition B in a cycle c, we denote by var(B) the set of vari-
ables occurring in B. If all the variables in var(B) are locally modified in c,
then B is a locally determined condition. Otherwise, it is globally determined.
In Subsection 4.1 and 4.2, we show how to determine cycle dependencies from
these two kinds of conditions.

4.1 Locally Determined Conditions

First, we can easily see that, if a cycle is terminating on a locally determined con-
dition, then it depends on some of the cycles in the same process for an infinite
number of executions. In particular, the cycle must depend on one of its neighbors.

Proposition 1. Given a cycle c in a process p such that c is terminating on a
locally determined condition B, if c is repeated infinitely often in a run r, then
one of the neighbors of c is also repeated infinitely often in r.

Let Cp denote the set of cycles in p, and Nc denote the set of the neighbors of
c. The above discussion gives two cycle dependencies, namely (c, Cp − {c}) and

182 S. Leue, A. Ştefănescu, and W. Wei

(c, Nc). The cycle (c, Cp − {c}) is usually coarse because not necessarily all the
cycles in p contribute to the re-satisfaction of B. In the following, we propose
several methods to refine the dependency (c, Cp − {c}).

Refinement 1. In general, it is impossible to determine which cycles make a
contribution to the re-satisfaction of the condition B. We define Ec(B) as the
set of variables occurring in c such that at least one of the variables in Ec(B)
must be modified in order to make B true again. The set Ec(B) subsumes but
not necessarily equals var(B). In the example in Figure 2, an infinite number of
repetitions of the left cycle relies on an infinite number of repetitions of the right
one that resets the value of y. However, the enabling condition of the left cycle
contains only the variable x which is not modified by the right cycle. We propose
the following recursive method to compute Ec(B). A variable v is in Ec(B) if
one of the following is satisfied: a) v ∈ var(B), or b) there is an assignment v′ =
e(v) in c such that v′ ∈ Ec(B). For a set S of variables, we denote by MC p(S)
the set of cycles in p which modify at least one variable in S. We obtain a finer
dependency (c,MC p(Ec(B))−{c}) by disregarding all cycles that do not modify
any variables in Ec(B).

active proctype p()
int x = 5; int y = 5;
do
:: (x > 0) -> y--; x = y;
:: y = 5;
od

(x > 0)

y−−

x = y y = 5

Fig. 2. An example Promela model and its control flow graph

Refinement 2. The above cycle dependency may still be coarse. Consider the
control flow graph in Figure 3. Note that, whenever leaving C1 to execute C3,
C2 is always executed. So, in any run in which C1 is repeated infinitely often,
no matter whether C3 is repeated infinitely often or not, C2 is always repeated
infinitely often. Based on this observation we can refine the cycle dependency
(C1, {C2, C3}) by safely removing C3. The above simple example leads to the
following definition.

active proctype p()
int x;
do
:: x = 5;

do
:: (x > 0) -> x--;
:: break;
od;

x = 5;
do
:: (x > 0) -> x--;
:: break;
od;

od

x = 5

x = 5

(x > 0)

(x > 0)x−−

x−−

C1
C2

C3

Fig. 3. An example Promela Model and its control flow graph

Definition 3. Given a cycle c in a process p such that c is terminating on a
locally determined condition B, and a cycle c′ ∈ MC p(Ec(B)) such that c and c′

are reachable from each other, c′ is preemptive with respect to c and B if there

Dependency Analysis for Control Flow Cycles 183

exist one exit state s in c and one exit state s′ in c′ such that a) there is an
acyclic path from s to s′ that does not modify any variables in Ec(B), and b)
there is an acyclic path from s′ to s that does not modify any variables in Ec(B).
Otherwise, c′ is preempted.

In the previous example, C2 is preemptive and C3 is preempted. It is easy to
prove that, on the way from any cycle c to execute one of its preempted cycles
and then back to c, at least one preemptive cycle must be executed. We can
therefore refine the cycle dependency (c,MC p(Ec(B)) − {c}) by removing all
the preempted cycles from (MC p(Ec(B))− {c}).

1 proc compute_cd(cycle c_0, condition B_0)
2 set[cycle] visited = {}
3 set[cycle] ccs = {}
4 queue[cycle] open = {}
5 search_for_preemptive_cycles(c_0, B_0)
6 return (c_0, ccs) // return the determined cycle dependency
7
8 proc search_for_preemptive_cycles(cycle c, condition B)
9 add c to visited

10
11 for each nc in neighbors(c)
12 if (nc not in visited) and (nc not in open)
13 if (nc modifies some variables in E_c(B))
14 then
15 add nc to visited
16 add nc to ccs
17 else
18 enqueue(open, nc)
19
20 if (open not empty)
21 c’ = dequeue(open)
22 search_for_preemptive_cycles(c’, B)

Fig. 4.An algorithm to determine cycle dependencies from locally determined conditions

Whereas Definition 3 can be used to determine whether a cycle is preempted,
Figure 4.1 gives an efficient algorithm to collect preemptive cycles during the com-
putation of cycle dependencies. In a Breadth First Search manner, the algorithm
visits each cycle at most once, and thus is linear in the number of cycles. This is
a generalization of the so-called “next door” strategy first mentioned in [12]. In
Appendix A.3 the termination and soundness of the algorithm are proved.

4.2 Globally Determined Conditions

If a cycle is terminating on a globally determined condition, then it may not
only depend on cycles in the same process, because cycles in other concurrent
processes can possibly influence the runtime value of the condition. This can
be illustrated in the example in Figure 5. The cycle in Process p is actually
the only cycle in p, and it depends on the cycle in q. We will not consider any
globally determined condition whose value is influenced by a message receiving
statement, which will be discussed in the next section.

184 S. Leue, A. Ştefănescu, and W. Wei

int y = 5;

active proctype p()
int x = 5;
do
:: (x > 0) -> y--; x = y;
od

active proctype q()
do
:: y = 5;
od

y = 5

proctype p() proctype q()

x = 5

(x > 0)

y−−

x = y

Fig. 5. An example Promela model and its control flow graphs

For a Promela model M , we denote by proc(M) the set of processes in M .
Suppose a cycle c in a process in M such that c is terminating on a globally de-
termined condition B. We can easily derive that c depends on (

⋃
q∈proc(M) MC q

(Ec(B)) − {c}). We may refine this cycle dependency by using the algorithm
in Figure 4.1 to rule out all the preempted cycles in MC p(Ec(B)) if c is in the
process p.

5 Discovering Dependencies from Message Receiving
Statements

When a cycle c contains a message receiving statement b?msg(x1, . . . , xn), it
needs an infinite number of msg messages to be repeated infinitely often. Conse-
quently, c depends on some cycles that send such messages. Let SC b,msg be the
set of the cycles sending messages msg to b. If c /∈ SC b,msg , then (c,SC b,msg) is
cycle dependency. In the remainder of the section, we assume that a cycle never
receives messages sent by itself.

A cycle that receives messages may contain a condition statement in which
the condition contains some variables used to store components of received mes-
sages. Usually, the cycle can be executed only if the received message contains
such components that make the condition true. Consider a cycle that contains
a message receiving statement s1 and a condition statement s2 such that the
condition in s2 contains variables used in s1. The following pattern for s1 and
s2 are observed in most real life Promela models: (1) all the variables in s1

are local; (2) the condition in s2 contains only variables used in s1; (3) no
variable in the condition is modified between s1 and s2 in the cycle. We call
such a condition a message determined condition. Figure 6 shows two processes
GIOPClient and GIOPAgent. In the control flow graph of GIOPClient, there is
a cycle depicted using only solid lines that contains a message determined con-
dition reply status = 4. We show in the remainder of the section how to derive
cycle dependencies from such a message determined condition.

In Figure 6, let c1 denote the solid-lined cycle in Process GIOPClient, and
c2 and c3 denote the cycles that respectively assign 4 and 5 to rs in Process
GIOPAgent. We have a dependency (c1,SC toClientL,Reply) and both c2 and c3 are

Dependency Analysis for Control Flow Cycles 185

active proctype GIOPClient()
...
do
:: toClientL?Reply(..., reply_status, ...) ->

... // replay_status is not modified here
if
:: (usedReqId[reqId] == 1) ->

if
:: (reply_status == 4) -> ...
...
fi;

...
fi;

...
od

active proctype GIOPAgent()
...
do
:: toAgent?Request(...) ->

...
if
:: (registered[objKey] == 255) ->

...
rs = 5;

:: else ->
...
rs = 4;

fi;
toClientL!Reply(..., rs, ...);

...
od

toClientL?Reply(..., reply_status, ...)

...

(usedReqId[reqId] == 1)

(reply_status == 4)

toAgent?Request(...)

...

proctype GIOPAgent()

proctype GIOPClient()

toClientL!Reply(

rs = 5else

rs = 4..., rs, ...)

(registered[objKey] == 255)

Fig. 6. An excerpt from a Promela model for CORBA GIOP [10]

in SC toClientL,Reply . However, this dependency is coarse because not necessarily
every cycle in SC toClientL,Reply may send a Replymessage to make reply status =
4 true in c1. As an example, c3 assigns 5 to rs whose value is passed to reply status
in c1 through message passing. Thus, c3 cannot make reply status = 4 true, and
it can be safely removed from SC toClientL,Reply to obtain a finer dependency.
Now the question is how to determine which cycle cannot send messages to
make reply status = 4 true.

First, we need to determine which kind of Reply messages must be received
by c1 to make reply status = 4 true. More precisely, we need to know which con-
dition must be satisfied by the components of such a message. According to the
definition of message determined conditions, reply status is not modified in c1 be-
tween the message receiving statement and (reply status == 4). However, af-
ter a message is received, reply status may still be modified before (reply status
== 4) is reached. This is because the execution of c1 can be interrupted, e.g., at
the source state of the transition corresponding to (usedReqId[reqId] == 1).
Then, when the execution of c1 is resumed, reply status may be already modified
by other cycles. However, in this concrete example, if c1 is interrupted, then be-
fore c1 is resumed the last completed interrupting cycle always receives a Reply
message. Moreover, this message contains a component whose value is passed to
reply status. The value of reply status is afterward unchanged before reaching the
message determined condition. This is because c1 and its neighbors satisfy the

186 S. Leue, A. Ştefănescu, and W. Wei

following structural property named fastened cycles: Given a cycle c that con-
tains a message receiving statement s1 and a condition statement s2, we denote
by t1 the transition corresponding to s1, by t2 the transition corresponding to s2,
and by p the path from the source state of t1 to the source state of t2. For each
neighbor c′ of c, if c′ and c contain a common state s within p, then c′ contains
also the path in c from the source state of t1 to s. The pattern in the fastened
cycles property results from nested if statements inside do loops which are a
common control structure of concurrent processes in an asynchronous reactive
system.

Proposition 2. Let c be a cycle that contains a condition statement (B) in
which the condition B is determined by messages received via the statement
b?msg(x1, . . . , xn) in c. If the fastened cycles property is satisfied by c and all of
its neighbors, then one execution of c needs a msg(d1, . . . , dn) message such that
B[xi ← di]1 is true.

Using Proposition 2, if we can determine that the execution of c requires a mes-
sage msg(d1, . . . , dn) such that B[xi ← di] is true, then we can use the following
method to determine whether a cycle c′ may not send such a message. Given a
cycle c′ that contains a message sending statement b!msg(d1, . . . , dn), if all di’s
are constant values, then we directly evaluate B[xi ← di] which is a constant
truth value. If it is false, then we can exclude c′ from SC b,msg . When some di

is a variable, we traverse backward in c′ from the source state s′ of the tran-
sition t corresponding to b!msg(d1, . . . , dn), and locate the first state s �= s′

such that s has an incoming transition outside c′ but within other cycles. If no
such s exists, then we take as s the predecessor of s′ in c′. The path p from s
to s′ is then the longest acyclic path within c that must be consecutively exe-
cuted immediately before reaching the message sending statement. We compute
the postcondition Post(p) of p by Floyd-Hoare-style forward inference starting
with the precondition true2. This assumes that all the variables initially contain
arbitrary values before p is consecutively executed. If Post(p)∧B[xi ← di] is un-
satisfiable, then c′ can be removed from SC b,msg. If the Promela model contains
only linear arithmetic expressions in assignments and conditions, then the satis-
fiability of Post(p) ∧B[xi ← di] can be decided fully automatically using either
an automated theorem prover or a linear programming solver. In the example in
Figure 6, we illustrate how to determine that c3 cannot send a message to satisfy
reply status = 4. The longest consecutively executed path p in this example starts
from the source state of the transition corresponding to the message receiving
statement, i.e., the topmost state in the control flow graph of GIOPAgent. Then
Post(p) = (· · · ∧ (rs = 5)). Since Post(p)∧ (reply status = 4)[reply status ← rs]
is false, c3 can be safely removed from (c1,SC toClientL,Reply).

1 B[xi ← di] is a boolean expression obtained from B by substituting simultaneously
each occurrence of xi with di.

2 Since the path p is acyclic, Post(p) can be computed fully automatically.

Dependency Analysis for Control Flow Cycles 187

6 The Refinement of a Livelock Freedom Test

We show how the discovery of cycle dependencies can be used to improve the
precision of a livelock freedom test that we developed [12]. We sketch this test
using the example in Figure 1.

In a Promela model we may label a set of statements as progress statements.
Let us assume the message receiving statement (Line 6) in the process client
is the only progress statement in Figure 1. A model is said to be free of livelock
if and only if at least one of the progress statements must be repeated infinitely
often in any infinite run of the model. Therefore, our example model is free
of livelock if the client always receives replies from the server infinitely often.
Moreover, we define a cycle to be a progress cycle if it contains at least one
progress statement. So, the right cycle cr of client is the only progress cycle.
We have shown in [12] that livelock freedom is undecidable for infinite state
systems.

The basic idea of our livelock freedom test in [12] is to check whether there is
any infinite run of a model in which no progress cycle is repeated infinitely often.
If no such run exists, then the model is livelock free. In our test, we first abstract
from arbitrary program code in the model and retain only the message sending
and receiving statements. Next, we abstract from message orders and denote
the message passing effect of a statement by an integer vector called an effect
vector. Each component of an effect vector corresponds to one type of messages.
A positive component represents the number of messages of the corresponding
type being sent by the statement. A negative component represents the number
of messages being received. We abstract further from the activation conditions
and dependencies of cycles. The resulting abstract system is a set of cycles with
their summary effect vectors. In our example, there are three cycles: cl with the
effect vector (1, 0), cr with (0,−1), and cs with (−1, 1).

We now give a necessary condition for the existence of a livelocked run, i.e.,
a run in which no progress cycle is repeated infinitely often, in the form of
an integer linear programming (ILP) problem. The ILP problem is shown in
Figure 7. It can be solved in polynomial time. Intuitively, any solution to this
ILP problem represents a combination of cycle effects that (1) can be repeated
forever since it does not consume any type of messages (Inequalities 1–2); and (2)
does not include any progress cycle (Inequality 3). The last inequality 4 restricts
the number of times that a cycle is repeated to be non-negative. If the ILP
problem has no solutions, then such cycle combination does not exist, which
proves livelock freedom for the model. Unfortunately, the ILP problem has a
solution: x1 = 1, x2 = x3 = 0. In this case, we do not know whether the model is
livelock free or not because the abstraction used in our test is over-approximating
and may introduce spurious behavior.

The above obtained ILP solution represents a counterexample suggesting the
scenario that only the cycle cl is repeated infinitely often in some runs. How-
ever, by the help of our cycle dependency discovery, we can see that the cycle
cl depends on cr. Since cr is not included in the counterexample, the counterex-
ample is spurious. Furthermore, we can use the cycle dependency to refine the

188 S. Leue, A. Ştefănescu, and W. Wei

(
1
0

)

x1 +

(
0

−1

)

x2 +

(
−1
1

)

x3 ≥
(

0
0

)

(1)

x1 + x2 + x3 > 0 (2)

x1 = 0 (3)

xi ≥ 0 (4)

Fig. 7. The livelock freedom determination ILP problem for the model in Figure 1

abstraction by adding the following inequality to the ILP problem in Figure 7:
x1 ≤ 3x2. Intuitively, the new constraint says that the cycle cr must be executed
at least once for every 3 times that cl is repeated. The determination of this
constraint also relies on the estimation of the maximal iteration counts of the
cycle cl, which we discussed in [14].

The quality of the above described refinement procedure largely relies on the ac-
curacy of the cycle dependency discovery techniques. The smaller a detected cycle
dependency is, the more spurious behavior can be excluded through refinement.

7 Experimental Results

We have implemented different strategies to detect both local and global cycle
dependencies for the models3 listed in Table 1. The experimental results were
obtained on a Pentium IV 1.60GHz machine with 1GB memory.

Table 1. Test models

Model # cycles # detected cycle dependencies

i-Protocol 22 30
MVCC 30 51
GIOP 66 203
SMCS 171 541

We detected three types of dependencies: (1) dependencies on neighbors (see
Corollary 1); (2) dependencies on cycles that may render the considered con-
dition to be re-satisfied; (3) dependencies caused by message receiving state-
ments. Table 1 lists the total number of dependencies of all three types that
were detected for each model. Different strategies are used to over-approximate
dependencies of Type 2 and 3, and their performances are compared as explained
below.
3 MVCC [8] models the Model View and Concurrent Control protocol used in the

Clock toolkit for the development of groupware applications; i-Protocol [6] models a
sliding-window protocol for Unix-to-Unix-Copy; GIOP [10] models inter-ORB mes-
sage exchange and server object migration in the CORBA architecture; SMCS [17]
models the T.122 and T.125 multi-point communication service protocol.

Dependency Analysis for Control Flow Cycles 189

Table 2. The comparison of different strategies to detect dependencies of Type 2. By
the size of a cycle dependency (c, S), we refer to the size of the set S. For each model and
each strategy, we list the sum of the sizes of all the detected dependencies of this type.

summary size of dependencies % reduction
w.r.t. MC

runtime (secs.)

Model MC ND PC ND PC MC ND PC
i-Protocol 63 63 43 0 31.7 13.02 13.27 13.66
MVCC 60 59 41 1.7 31.7 3.55 3.59 3.52
GIOP 837 788 714 5.9 14.7 29.25 30.12 33.17
SMCS 5200 5200 3424 0 34.2 136.63 143.75 175.05

Table 7 compares three different strategies for the detection of dependencies
of type 2: MC is the coarsest one that includes a cycle in the dependency as
long as it may influence at least one variable in the considered condition; ND
is the next-door strategy; PC is the finest one that collects only preemptive
cycles for computing dependencies. We observe that ND leads to only a minor
improvement of the accuracy of the detected dependencies. PC reduces the sizes
of dependencies much more effectively at the expense of a modest or even no
runtime penalty (see the results for MVCC4). In particular, PC reduces the sizes
of dependencies by more than one third for the model SMCS while ND does not
reduce the cycle number at all.

Table 3. The comparison of different strategies to detect global dependencies caused
by message receiving statements

summary size of dependencies % reduction

w.r.t. SC

runtime (secs.)

Model SC FC FC SC FC
i-Protocol 62 33 46.8 0.01 0.05
MVCC 35 35 0 0.01 0.66
GIOP 274 242 11.7 0.10 10.78
SMCS 410 338 17.5 1.37 45.17

Table 3 shows two strategies to detect global dependencies caused by message
receiving statements: SC is coarser and includes any cycle in the dependency as
long as it may send the same type of messages as received by the considered
receiving statement. FC checks the fastened cycles property in order to exclude
cycles that cannot contribute a desired message. We observe that FC can reduce
the sizes of dependencies quite considerably at the expense of a moderate to
significant runtime penalty. The fact that FC did not reduce the dependency
sizes for MVCC is expected because few variables are used in the model to store
components of incoming messages. Moreover, those component storing variables
are not used to control the behavior of the model, i.e., there are no message
determined conditions. The extra runtime required by FC on MVCC was spent
4 The reason is that ND and PC sometimes check only a small number of cycles for

computing dependencies for one cycle while MC has to check all the cycles in the
same process.

190 S. Leue, A. Ştefănescu, and W. Wei

on checking the existence of message determined conditions. If we know a priori
that no such conditions exist in a model, which can be achieved by a manual
scan of the Promela code, then FC is unnecessary.

To illustrate the benefit of our analysis we applied our approach to the coun-
terexample refinement of our livelock freedom analysis for Promela models [12].
We have mentioned that, by obtaining smaller and more dependencies, we stand
a better chance to determine spuriousness for the counterexample. The previous
version of our prototype livelock freedom checker aLive used the ND strategy
to discover local dependencies and was not able to detect global dependencies.
In [12] we reported that the local cycle dependency detection helped to remove
7 counterexamples for a model of the Group Address Registration protocol for
which livelock freedom was successfully proved. For the GIOP model, 8 coun-
terexamples were found and aLive failed to prove spuriousness for one of them.
The spuriousness of this counterexample is caused by abstracting away a global
dependency. After we employed the FC strategy proposed in this paper in aLive,
the one remaining counterexample in GIOP was determined to be spurious and
subsequently excluded from the abstraction. The same was observed during the
checking of the i-Protocol model for which 4 more spurious counterexamples
were discovered due to the detection of global dependencies.

We also performed experiments in which we used the cycle dependency analy-
sis in the spuriousness determination of counterexamples found during our buffer
boundedness analysis [13]. The increase in precision that we achieved lies within
the range of increase that we obtained for the livelock freedom analysis.

8 Conclusion

The first contribution of our work is a formalization of the concept of control
flow cycle dependencies. The second contribution is that we presented several
incomplete but efficient static analysis methods for the detection of both local
and global cycle dependencies for reactive systems of concurrent processes. Fur-
thermore, we conducted experiments that show the precision of this analysis
when applied to a set of models of real-life systems. We also show that the pre-
cision of our approach compared to naive cycle dependency detection techniques
improves the precision of our livelock freedom and buffer boundedness analyses
since more spurious counterexamples can be detected.

Future work will include improving our analysis by incorporating data flow
analysis. As an example, consider the computation of Ec(B) as the set of vari-
ables that may influence the run-time values of the variables in B along the cycle
c (Sec. 4.1). If a variable in Ec(B) does not occur in B, then it must appear in the
right hand side of an assignment statement that directly or indirectly changes
the value of some variable v in B. However, the effect of such an assignment
may be killed later by an assignment to v before the condition statement (B)
is reached. Therefore, the use of reachable definition analysis may improve the
precision of Ec(B). We will also consider broadening the approach to a wider
range of programming and modeling languages. Finally, we see a potential for

Dependency Analysis for Control Flow Cycles 191

the application of cycle dependency analyses to other application areas, such as
the prediction of temporal conflicts and spatial localities of code blocks for the
improvement of instruction cache hit rates [11].

Acknowledgment. The work of the second author was supported by the DFG-
funded research project IMCOS (Grant No. LE 1342/1-/2). We thank Daniel
Butnaru for his assistance in programming the implementation prototype. Fi-
nally, we thank the anonymous referees for their valuable suggestions.

References

1. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg
(2005)

2. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983)

3. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

4. Corbett, J.C., Avrunin, G.S.: Using integer programming to verify general safety
and liveness properties. Formal Methods in System Design 6(1), 97–123 (1995)

5. Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

6. Dong, Y., Du, X., Holzmann, G.J., Smolka, S.A.: Fighting livelock in the GNU
i-Protocol: a case study in explicit-state model checking. Int. Journal on Software
Tools for Technology Transfer (STTT) 4(4), 505–528 (2003)

7. Dwyer, M.B., Hatcliff, J.: Slicing software for model construction. In: Proc. of
PEPM 1999, pp. 105–118 (1999)

8. Graham, T.C.N., Urnes, T., Nejabi, R.: Efficient distributed implementation of
semi-replicated synchronous groupware. In: ACM Symposium on User Interface
Software and Technology, pp. 1–10 (1996)

9. Holzmann, G.J.: The SPIN model checker: Primer and reference manual. Addison
Wesley, Reading (2004)

10. Kamel, M., Leue, S.: Formalization and validation of the general Inter-ORB pro-
tocol (GIOP) using PROMELA and SPIN. Int. Journal on Software Tools for
Technology Transfer (STTT) 2(4), 394–409 (2000)

11. Kumar, R., Tullsen, D.: Compiling for instruction cache performance on a multi-
threaded architecture. In: Proc. of MICRO 2002, pp. 419–429. ACM/IEEE (2002)

12. Leue, S., Ştefănescu, A., Wei, W.: A livelock freedom analysis for infinite state
asynchronous reactive systems. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 79–94. Springer, Heidelberg (2006)

13. Leue, S., Mayr, R., Wei, W.: A scalable incomplete test for the boundedness of UML
RT models. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
327–341. Springer, Heidelberg (2004)

14. Leue, S., Wei, W.: Counterexample-based refinement for a boundedness test for
CFSM languages. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 58–74.
Springer, Heidelberg (2005)

192 S. Leue, A. Ştefănescu, and W. Wei

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
– Specification. Springer, Heidelberg (1992)

16. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: PPOPP 1993, pp. 129–
138. ACM Press, New York (1993)

17. Merino, P., Troya, J.M.: Modeling and verification of the ITU-T multipoint com-
munication service with SPIN. In: Proc. of SPIN 1996 (1996)

18. Millett, L.I., Teitelbaum, T.: Issues in slicing Promela and its applications to model
checking, protocol understanding, and simulation. STTT 2(4), 343–349 (2000)

19. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel. In: SIGSOFT FSE 1998, pp.
24–34. ACM Press, New York (1998)

20. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis, 2nd edn.
Springer, Heidelberg (2005)

21. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

22. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

23. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5) (2007)

24. Siegel, S.F., Avrunin, G.S.: Improving the precision of INCA by eliminating solu-
tions with spurious cycles. IEEE Trans. Software Eng. 28(2), 115–128 (2002)

25. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3(3), 121–189 (1995)

A Appendix

A.1 The Proof of Theorem 1

We prove the theorem by a reduction from the following undecidable problem [2]:
the executability of a message reception in a system of communicating finite state
machines (CFSM)5.

Instance: A CFSM M and a local state s of M having an outgoing transition t
labeled by the receive action ‘?a’

Question: Does there exist a run of M such that the message reception ‘?a’ is
executed at s?

We construct a CFSM system M ′ from M by (1) introducing a new state
s′ in the same state machine as s is; (2) adding at s′ a self-transition labeled
with ‘!b’ where b is a newly introduced type of message; (3) changing the target
state of the transition t to the newly introduced state s′; and finally (4) adding
a new state machine consisting of a single state s′′ and a self-transition at s′′.
5 The proof is actually for the undecidability of the same problem for communicating

finite state machines (CFSM). However, Promela models with unbounded buffers
can simulate CFSM systems. Thus, the undecidability result also holds for Promela
models.

Dependency Analysis for Control Flow Cycles 193

Moreover, let c be the self-loop at s′ and S be the singleton cycle set consisting
of the self-loop at s′′.

We prove that ‘?a’ can be executed at s in M if and only if c does not depends
on S in M ′.

For the “if” part, assume that c does not depends on S. Then, there exists
an infinite run of M ′ in which c is executed infinitely often while the self-loop
at s′′ is not. From the construction of M ′, c can be executed only if ‘?a’ can be
executed at s in M ′, which means that ‘?a’ can be executed also in M .

For the “only if” part, assume that ‘?a’ can be executed at s in M . Then,
‘?a’ can be also executed in M ′. After ‘?a’ is executed, c can be repeated alone
forever, which means c does not depend on any other cycles for an infinite number
of executions. &�

A.2 The Proof of Proposition 1

If c is repeated an infinite number of times, then some other cycle c′ in p must
be repeated also infinitely often. On every path from a state in c to a state in c′,
there must be a transition t from an exit state of c such that t is not contained
in c. There are only finitely many such transitions, so one of them is taken an
infinite number of times and it belongs to at least one of the neighbors of c. &�

A.3 The Termination and Soundness of the Algorithm in Figure 4.1

Proposition 3 (Termination). The algorithm in Figure 4.1 always terminates.

Proof. It is easy to see that no cycle can be added to visited more than once.
Hence, each call to search for preemptive cycles results in a new cycle being
added to visited (Line 9). Note that our algorithm never removes any cycle
from visited. Since there are only finitely many cycles, the algorithm must
terminate. &�

Proposition 4 (Soundness). Given as an input a cycle c in process p such that
c is terminating on a locally determined condition B, the algorithm in Figure 4.1
returns a cycle dependency (c, S) such that a cycle c′ ∈ MC p(Ec(B)) is preemp-
tive if and only if c′ ∈ S.

Proof. We assign a natural number level (d) to each cycle d that is added to
visited as follow: (1) level (c) = 0; (2) if c1 is enqueued (Line 18) or added to
ccs (Line 16) inside the call to search for preemptive cycles(c2, B) and
level(c2) = n, then level (c1) = n + 1. In the second case, we say that c2 is the
parent of c1 and c1 is a child of c2. Then, we can build a parent-child tree (PCT).

For the “if” part, we prove that if c′ ∈ S then it is preemptive. It is easy to
see that, in the path from the root c to c′ in the PCT, no cycle except c and
c′ modifies any variable in Ec(B). From this path, we can easily construct an
acyclic path θ from an exit state t in c to an exit state t′ in c′, and an acyclic
path θ′ from t′ to t. θ and θ′ apparently do not modify any variable in Ec(B).

For the “only if” part, assume that c′ is preemptive. Then, there is an exit
state t in c, an exit state t′ in c′, an acyclic path θ from t to t′, and an acyclic

194 S. Leue, A. Ştefănescu, and W. Wei

path θ′ from t′ to t such that θ and θ′ do not modify any variable in Ec(B).
The path < θ, θ′ > can be decomposed into a set of cycles, from which we can
construct a sequence of pairwise distinct cycles c1, . . . , cn such that (1) c1 is a
neighbor of c, (2) cn is a neighbor of c′, and (3) each ci and ci+1 are neighbors.
It is easy to see no cycle in such a sequence modifies any variable in Ec(B).
Let SEQ be the set of shortest sequences of cycles as constructed in this way.
Assume that the sequences in SEQ are of length n. For each sequence in SEQ, we
add c to its head and attach c′ to the end. We prove that there is one sequence
seq ∈ SEQ that is a path in the PCT, which implies that c′ is added to ccs. The
proof is by showing that, for any k ≤ n, there is a sequence seq ∈ SEQ such
that its prefix of length i is a path in the PCT (*), by induction on the length i
of prefixes of sequences in SEQ.

Induction base: The prefix of length 1 of any sequence in SEQ is c, which is a
path in the PCT.

Induction step: Assume that (*) holds for k. Let P be the set of sequences
in SEQ such that their prefixes of length k are paths in the PCT. Let Ck be
the set of cycles {d | d is the k-th element in a sequence in P}, and Ck+1 be
{d | d is the (k+1)-th element in a sequence in P}. By contradiction, we assume
that there is no sequence in P such that its prefix of length (k + 1) is a path in
the PCT. Then, inside the call to search for preemptive cycles(ck, B) for
each ck ∈ Ck, none of the neighbors of ck+1 in Ck+1 is enqueued or added to
visited. This happens only when ck+1 is already in open or in visited. Let p
be the parent of ck+1. So, p /∈ P . We have either that (1) level (p) = k, or that
(2) level (p) < k. When level (p) = k, the path from c to p must be the prefix
of length k of some sequence in SEQ, which means that p ∈ P . This leads to a
contradiction. When level (p) < k, we construct a sequence of cycles from any
sequence in P whose (k +1)-th element is ck+1, by replacing the prefix of length
k by p. The new sequence is shorter than the sequences in SEQ, which contradicts
that SEQ contains the shortest sequences of pairwise distinct cycles connecting
c and c′. &�

A.4 The Proof of Proposition 2

Lemma 1. Using the notation in the definition of the fastened cycles property
in Section 5, the following is satisfied: For any path p1 that ends at an exit state
s within p, the path p2 in c from the source state of t1 to s is consecutively
executed6 in the end of p1.

Proof. We suppose that there are q exit states in p: es1, . . . , esq. We prove the
lemma by induction on the index k of esk.

Induction base: es1 is the source state of t1. The path from es1 to es1 is an
empty path which is always consecutively executed.
6 Given two paths p1 and p2, we say that p2 is executed in p1 if p2 is a subsequence

of p1. If p2 is a consecutive subsequence of p1, then we say that it is consecutively
executed in p1. In particular, an empty path is always consecutively executed.

Dependency Analysis for Control Flow Cycles 195

Induction step: Assume the lemma holds for esm where m < k. Let p′ denote
the path from the source state of t1 to esk. Suppose that esj is the last exit
state at which the execution of p′ is interrupted. We have that j < k. From the
induction assumption, immediately before the execution p′ is resumed at esj, the
path from the source state of t1 to esj is consecutively executed. Furthermore,
after the execution of p′ is resumed, the remaining part of p′ is also consecutively
executed. So, p′ is consecutively executed. &�

In the following, we prove Proposition 2 using the above lemma.

Proof. We denote by s1 the statement b?msg(x1, . . . , xn), by s2 the statement
(B), by t1 the transition corresponding to s1, by t2 the transition corresponding
to s2, and by p the path from the source state of t1 to the source state of t2.

We denote by sl the exit state within p at which the execution of c is inter-
rupted at the last time in a run. We denote by p′ the path from the source state
of t1 to sl in c, and by p′′ the path from sl to the source state of t2 in c . So,
p = < p′, p′′ >. Following Lemma 1, before the execution of c is resumed, p′ is
consecutively executed. Because sl is the last state at which c is exited, p′′ is
also consecutively executed after c is re-entered. So, p is consecutively executed
before the condition statement s2 is reached. In this consecutive execution of p
a message msg(d1, . . . , dn) is received and each variable xi ∈ var(B) is assigned
with di. After p is executed, the execution of c can continue if and only if B
is true. Since any variable xi ∈ var(B) is not modified in p after receiving the
message, we have that B[xi ← di] is true. &�

Improved On-the-Fly Equivalence Checking

Using Boolean Equation Systems

Radu Mateescu and Emilie Oudot�

Inria/Vasy project-team
Faculté des Sciences Mirande, bât. Le2i, F-21000 Dijon, France

{Radu.Mateescu,Emilie.Oudot}@inria.fr

Abstract. Equivalence checking is a classical verification method for
ensuring the compatibility of a finite-state concurrent system (protocol)
with its desired external behaviour (service) by comparing their underly-
ing labeled transition systems (Ltss) modulo an appropriate equivalence
relation. The local (or on-the-fly) approach for equivalence checking com-
bats state explosion by exploring the synchronous product of the Ltss
incrementally, thus allowing an efficient detection of errors in complex
systems. However, when the two Ltss being compared are equivalent, the
on-the-fly approach is outperformed by the global one, which completely
builds the Ltss and computes the equivalence classes between states us-
ing partition refinement. In this paper, we consider the approach based
on translating the on-the-fly equivalence checking problem in terms of
the local resolution of a boolean equation system (Bes). We propose two
enhancements of the approach in the case of equivalent Ltss: a new,
faster encoding of equivalence relations in terms of Bess, and a new lo-
cal Bes resolution algorithm with a better average complexity. These
enhancements were incorporated into the Bisimulator 2.0 equivalence
checker of the Cadp toolbox, and they led to significant performance
improvements w.r.t. existing on-the-fly equivalence checking algorithms.

1 Introduction

Equivalence checking is a classical verification method for finite-state concurrent
systems that consists in comparing the behaviour of the system under design
(typically, a protocol or a low-level hardware description) with its desired exter-
nal behaviour (typically, a service or a high-level hardware description) modulo
a suitable equivalence relation. Protocol and service behaviours are usually rep-
resented as labeled transition systems (Ltss), and the relations most used for
comparing them are the bisimulations defined in the framework of process al-
gebras, such as Ccs [37], Csp [9], or Acp [6] and of the formal specification
languages inspired from them, such as Lotos [26] or Chp [30]. In practice, Ltss
are often represented in two complementary ways, which also determine the na-
ture of equivalence checking algorithms: either explicitly, by their list of states
� This research was partially funded by the Ec-Moan project no. 043235 of the Fp6-

Nest-Path-Com European program.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 196–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved On-the-Fly Equivalence Checking Using BES 197

and transitions, or implicitly, by their “successor function” returning the set of
transitions going out of a given state. The implicit and explicit Lts representa-
tions are suitable for protocols (which are usually large) and services (which are
usually small), respectively.

There are basically two approaches for equivalence checking: the global
one [15], which operates on explicit Ltss, computes the equivalence classes of
states by using partition refinement and then checks whether the initial states of
the two Ltss fall into the same equivalence class; and the local one [12], which
operates on implicit Ltss, explores the synchronous product between the two
Ltss and searches for mismatches indicating the non equivalence of their initial
states. Global algorithms are more effective when the two Ltss are equivalent,
but require their complete construction, which is limited for large systems by the
amount of memory available. Local (or on-the-fly) algorithms are more effective
when the Ltss are not equivalent, allowing the detection of errors in complex
systems even when the global approach would fail. Therefore, on-the-fly algo-
rithms are useful at the beginning of the verification process, when errors occur
frequently and must be detected quickly, whereas global algorithms are more
suitable at a later stage, once the formal descriptions of the protocol and the
service are stable and their underlying Ltss become equivalent.

Our objective is to improve the performance of on-the-fly equivalence checking
algorithms when the Ltss to be compared are equivalent, which is the worst case
for this class of algorithms because it forces them to explore the synchronous
product of the two Ltss entirely. This would combine the advantages of global
and local verification, making the on-the-fly approach suitable throughout the
verification process. We consider here the technique relying on the translation
of on-the-fly equivalence checking to the local resolution of a boolean equa-
tion system (Bes) [2,32]. This technique involves two clearly separated aspects,
namely the Bes encodings of bisimulation relations and the local Bes resolution
algorithms, which can be developed and optimized independently. To improve
performance, we seek to enhance both these aspects.

First, we devise new Bes encodings of the branching [44] and weak [37] bisim-
ulations, obtained by migrating a part of the computation of transitive reflexive
closures over internal steps (τ -closures) into the boolean equations. This simpli-
fies the structure of Bes equations considerably and reveals to be faster than
computing τ -closures separately by using specialized algorithms [31]. Second,
we propose a new local Bes resolution algorithm, which exhibits a smaller aver-
age complexity than previously published algorithms [1,45,17,32]. Our algorithm
is based on a suspend/resume depth first search (sr-Dfs) of the dependencies
between boolean variables, and stops as soon as the Bes portion explored con-
tains a single example or counterexample for the boolean variable to be solved,
therefore being optimal from this point of view.

These two enhancements led to version 2.0 of the Bisimulator [32] equiv-
alence checker of the Cadp [22] verification toolbox. The tool was developed
using the generic Open/Cæsar [21] environment for on-the-fly manipulation of
Ltss, and uses as verification engine the Cæsar Solve [32] library for on-the-fly

198 R. Mateescu and E. Oudot

resolution of Bess. The enhancements led to a significant performance increase
w.r.t. Bisimulator 1.0, as we observed on Ltss generated from protocol and
hardware descriptions or taken from the Vlts benchmark suite [46].

Related work. On-the-fly equivalence checking algorithms [12] received relatively
little attention from the verification community, the research being mainly fo-
cused on optimizing global algorithms based on partition refinement [15,20].
Among the first on-the-fly equivalence checking algorithms were those proposed
in [18] and subsequently implemented in the Aldébaran tool [19]. Two dif-
ferent algorithms were elaborated: the first one compares deterministic Ltss by
searching their synchronous product for a pair of non equivalent states, and the
second one handles nondeterministic Ltss by assuming that certain couples of
states are equivalent and by backtracking in the synchronous product whenever
such an assumption turns out to be wrong. The verification technique based on
Bes resolution allows one to reproduce the first algorithm by observing that the
Bess corresponding to bisimulations between deterministic Ltss are conjunc-
tive, and by devising a specialized local resolution algorithm for this case [32].
The algorithm for the nondeterministic case is outperformed in practice by local
Bes resolution algorithms, as it was observed experimentally [5].

Another approach of checking the equivalence of two Ltss is to rephrase the
problem as the model checking on one Lts of a characteristic formula [25] in
modal μ-calculus derived from the other Lts. This approach was elegantly im-
plemented in the Concurrency Workbench [13,11], but was hampered in practice
for large Ltss by the prohibitive size of characteristic formulas, which is at least
of the same order as the Lts size. The quest for performance was pursued by
considering other intermediate formalisms suitable for representing equivalence
checking, such as the Bess, which are lower-level than the modal μ-calculus and
therefore are likely to require less computation effort.

Encodings of branching and weak bisimulation using Bess of alternation depth
two were proposed in [2]. These Bess contain two mutually recursive equation
blocks, a maximal fixed point one encoding the bisimulation relation, and a min-
imal fixed point one encoding the τ -closures to be computed in the input Ltss.
The local resolution algorithms underlying this class of Bess have a quadratic
complexity w.r.t. the Bes size [45], which makes them impractical for large Ltss;
no implementation of this approach was reported as far as we know. Although a
subquadratic algorithm for solving Bess with disjunctive/conjunctive equation
blocks of arbitrary alternation depth was proposed in [24], it does not seem to
capture the Bess for branching and weak bisimulations, which consist of a dis-
junctive block encoding τ -closures and a general block encoding the equivalence
relation. Simpler encodings of weak equivalences using alternation-free Bess,
obtained by leaving the computation of τ -closures (possibly enhanced with on-
the-fly τ -confluence reduction [38]) outside the Bes, proved to be practically
effective [32]. The resulting Bess can be solved using the many local resolution
algorithms available [28,1,45,29,17,32].

An alternative approach consists in formulating equivalence checking by
means of Horn clauses [40], which can be solved using classical Hornsat

Improved On-the-Fly Equivalence Checking Using BES 199

resolution algorithms [16,4]. We believe that Bes encodings provide a more
direct way of connecting on-the-fly equivalence checking to graph exploration
algorithms. In fact, local Bes resolution algorithms, such as the one presented
in this paper, can also be used for solving Hornsat efficiently, by applying the
translation from Horn clauses to Bess proposed in [29].

Paper outline. Section 2 defines the class of Bess we use and illustrates the
functioning of local resolution algorithms. Section 3 proposes new, faster Bes

encodings for branching and weak bisimulations. Section 4 describes our new
local resolution algorithm, and Section 5 shows experimentally its performance
when applied to equivalence checking. Finally, Section 6 gives some concluding
remarks and directions for future work.

2 Background

A boolean equation system (Bes) is a set of possibly recursive equations B =
{Xi

σ= Xi1 opi · · · opi Ximi
}1≤i≤n, where Xi ∈ X are boolean variables, opi ∈

{∨,∧} are disjunctive or conjunctive connectors, and σ ∈ {μ, ν} is a minimal or
maximal fixed point sign. An empty disjunction (resp. conjunction) is equivalent
to the false (resp. true) constant. Each boolean variable occurring in the right-
hand side of an equation must be defined by some equation of the Bes. A
variable Xi is said to be disjunctive (resp. conjunctive) iff opi = ∨ (resp. ∧).
Bess of this kind are called simple, because each of their equations contains
a single type of boolean connector (either ∨, or ∧) in its right-hand side. Any
Bes containing arbitrary combinations of boolean connectors in the right-hand
sides of its equations can be brought to the simple form with at most a linear
blow-up in size, by introducing new equations to factor subformulas [3]. We
focus our attention on Bess with a single equation block (i.e., set of equations
having the same fixed point sign), since they are suitable for encoding equivalence
checking problems [32]; more general Bess with multiple blocks are used for
encoding model checking problems [14,33]. In-depth presentations of the theory
and applications of Bess can be found in [1,34].

For each equation i of a Bes, the evaluation of the formula in its right-hand
side yields a boolean value defined as follows:

[[Xi1 opi · · · opi Ximi
]]δ = δ(Xi1) opi · · · opi δ(Ximi

).

where the context δ : X → Bool is a partial function assigning boolean values
to all variables occurring in the formula. The solution of a Bes is a vector
〈v1, ..., vn〉 ∈ Booln equal to the fixed point σΦ of the functional Φ : Booln →
Booln associated to the Bes:

Φ(b1, ..., bn) = 〈[[Xi1 opi · · · opi Ximi
]][b1/X1, ..., bn/Xn]〉1≤i≤n

where [b1/X1, ..., bn/Xn] is the context assigning the boolean value bi to variable
Xi for 1 ≤ i ≤ n. Since the boolean formulas in a Bes do not contain negation

200 R. Mateescu and E. Oudot

operators, the functional Φ is monotonic, which ensures the existence of its min-
imal and maximal fixed points on 〈Booln, falsen, truen,∨n,∧n〉, the pointwise
extension of the boolean lattice [27]. In the sequel, we consider only maximal
fixed point Bess (i.e., with σ = ν), which allow to encode equivalence checking.

The local resolution of a Bes B, which underlies on-the-fly verification (based
on a forward exploration of Ltss), amounts to computing the solution vi of
a particular variable Xi by solving as few equations of B as possible. Local
resolution algorithms are easier to devise and understand by representing Bess
as boolean graphs [1]. Given a Bes B = {Xi

σ= Xi1 opi · · · opi Ximi
}1≤i≤n, its

associated boolean graph G = (V, E, L) is defined as follows: V = {X1, ..., Xn}
is the set of vertices (boolean variables), E = {(Xi, Xj) | 1 ≤ i ≤ n ∧ j ∈
{i1, ..., imi}} is the set of edges (dependencies between variables), and L : V →
{∨,∧}, L(Xi) = opi for 1 ≤ i ≤ n is the labeling of vertices as disjunctive
or conjunctive. The constant false (resp. true) is represented as a sink ∨-vertex
(resp. ∧-vertex). The local resolution of a vertex Xi consists in two activities
performed simultaneously [1,45,32]: a forward exploration of the boolean graph
along its edges, starting at Xi; and a backward propagation of the stable variables
found, i.e., whose boolean value has been computed. An example of local Bes

resolution is shown on Figure 1. The local resolution algorithm used is based
on a depth-first search (Dfs) of the boolean graph, starting at the variable of
interest X1. The light grey area delimits the boolean subgraph explored during
resolution. Black (resp. white) vertices correspond to variables whose solution is
true (resp. false).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1
ν
= X2 ∧ X7

X2
ν
= X3 ∧ X5

X3
ν
= X1 ∨ X4

X4
ν
= false

X5
ν
= X5 ∨ X6

X6
ν
= true

X7
ν
= X2 ∨ X6 ∨ X8

X8
ν
= X7 ∧ X9

X9
ν
= false

Fig. 1. Boolean graph-based local resolution of variable X1

The solution of a Bes can also be characterized by interpreting on its boolean
graph the following example formula [35] written in modal μ-calculus:

φex = νX.(P∨ ∧ 〈−〉X) ∨ (P∧ ∧ [−]X)

where the atomic propositions P∨ and P∧ denote ∨-vertices and ∧-vertices, re-
spectively. Formula φex expresses that every ∨-vertex (resp. ∧-vertex) satisfying
φex must have one (resp. all) of its successors satisfying φex . The solution vi of

Improved On-the-Fly Equivalence Checking Using BES 201

a variable Xi is true iff the corresponding vertex Xi satisfies φex in the boolean
graph. A positive diagnostic (or example) for vertex Xi is a boolean subgraph
that contains Xi and is a model for φex . Dually, a negative diagnostic (or coun-
terexample) for Xi is a boolean subgraph containing Xi and being a model for
the counterexample formula φcx = ¬φex . The dark grey area shown on Figure 1
delimits an example for X1, generated by traversing again the boolean subgraph
explored during resolution [35].

3 Encoding Bisimulation Relations as BESs

Labeled transition systems (Ltss) are the semantic model underlying process
algebras [7] and the related languages, such as Lotos [26] and Chp [30]. An
Lts is a quadruple M = 〈Q, A, T, q0〉, where Q is the set of states, A is the set
of actions (including the internal action τ), T ⊆ Q × A × Q is the transition
relation, and q0 ∈ Q is the initial state. A transition 〈p, a, q〉 ∈ T (also written
p

a→ q) indicates that the system can move from state p to state q by performing
action a. The notation is extended to transition sequences: p

l→ q denotes the
existence of a sequence going from p to q and whose concatenated labels form a
word of the language l ⊆ A∗.

To compare the Ltss modeling the behaviour of concurrent systems, various
equivalence relations were proposed (see [43] for a survey), among which bisim-
ulations are most useful in practice due to their congruence properties w.r.t.
the parallel composition operators of process algebras. We consider here three
widely-used bisimulations: strong [39], branching [44], and weak [37], the last
two being originally proposed as native equivalence relations for Acp [6] and
Ccs [37], respectively. Given two Ltss Mi = 〈Qi, Ai, Ti, q0i〉 with i ∈ {1, 2}, a
bisimulation ≈⊆ Q1×Q2 is a relation such that p ≈ q iff ∀p a→ p′.∃q a→ q′.p′ ≈ q′

and ∀q a→ q′.∃p a→ p′.p′ ≈ q′, where p, p′ ∈ Q1, a ∈ A1 ∪ A2, and q, q′ ∈ Q2.
Bisimulations are closed under union, and the strong bisimulation ≈s is defined
as the greatest one, i.e., the union of all bisimulations. M1 is strongly equivalent
to M2 (notation M1 ≈s M2) iff q01 ≈s q02.

A basic encoding of this mathematical definition as a maximal fixed point
Bes is shown in Table 1 (upper part, first row). The fact that p ≈s q is encoded
as a boolean variable Xpq defined by an equation whose right-hand side boolean
formula is directly derived from the two bisimulation conditions. The correctness
of this encoding scheme (which reformulates the definition of strong bisimulation
in propositional logic instead of first-order logic), relies on a bijection between
the set of bisimulations and the set of fixed point solutions of the functional
associated to the Bes. To obtain a simple Bes compliant with the definition
given in Section 2, we introduce the new variables Yp′qa and Zpq′a such that
each right-hand side formula contains a single type of boolean connector (second
row). The Bes for the strong preorder relation 's is obtained by keeping only
the coloured parts of the equations. Checking the strong bisimilarity of M1 and
M2 amounts to solving the variable Xq01q02

of this Bes, which can be carried
out using a local resolution algorithm. The evaluation of the boolean formulas

202 R. Mateescu and E. Oudot

in the right-hand sides of the equations defining Xpq, Yp′qa, and Zpq′a triggers a
forward exploration of transitions in M1 and M2, which enables an incremental
construction of both Ltss, and therefore an on-the-fly verification.

Table 1. Basic and full Bes encodings of three widely-used bisimulations

Strong bisimulation

Xpq
ν
=

∧
p

a→p′
∨

q
a→q′ Xp′q′ ∧

∧
q

a→q′
∨

p
a→p′ Xp′q′

Xpq
ν
=

∧
p

a→p′ Yp′qa ∧
∧

q
a→q′ Zpq′a Yp′qa

ν
=

∨
q

a→q′ Xp′q′ Zpq′a
ν
=

∨
p

a→p′ Xp′q′

Branching bisimulation

Xpq
ν
=

∧
p

a→p′((a = τ ∧ Xp′q) ∨
∨

q
τ∗
→q′ a→q′′(Xpq′ ∧ Xp′q′′)) ∧

∧
q

a→q′((a = τ ∧ Xpq′) ∨
∨

p
τ∗
→p′ a→p′′(Xp′q ∧ Xp′′q′))

Xpq
ν
=

∧
p

a→p′ Ypp′qa ∧
∧

q
a→q′ Zpqq′a Ypp′qa

ν
= (a = τ ∧ Xp′q) ∨ Upp′qa

Zpqq′a
ν
= (a = τ ∧ Xpq′) ∨ Vpqq′a Upp′qa

ν
=

∨
q

a→q′ Wpp′qq′ ∨
∨

q
τ→q′ Upp′q′a

Vpqq′a
ν
=

∨
p

a→p′ Wpp′qq′ ∨
∨

p
τ→p′ Vp′qq′a Wpp′qq′

ν
= Xpq ∧ Xp′q′

Weak bisimulation

Xpq
ν
=

∧
p

a→p′((a = τ ∧
∨

q
τ∗
→q′ Xp′q′) ∨

∨

q
τ∗.a.τ∗

→ q′ Xp′q′) ∧
∧

q
a→q′((a = τ ∧

∨

p
τ∗
→p′ Xp′q′) ∨

∨

p
τ∗.a.τ∗

→ p′ Xp′q′)

Xpq
ν
=

∧
p

a→p′ Yp′qa ∧
∧

q
a→q′ Zpq′a

Yp′qa
ν
= (a = τ ∧ Up′q) ∨ Vp′qa Up′q

ν
= Xp′q ∨

∨
q

τ→q′ Up′q′

Vp′qa
ν
=

∨
q

a→q′ Up′q′ ∨
∨

q
τ→q′ Vp′q′a Zpq′a

ν
= (a = τ ∧ Wpq′) ∨ Tpq′a

Wpq′
ν
= Xpq′ ∨

∨
p

τ→p′ Wp′q′ Tpq′a
ν
=

∨
p

a→p′ Wp′q′ ∨
∨

p
τ→p′ Tp′q′a

Similar encoding schemes hold for the branching (≈b) and weak (≈w) bisimu-
lations, as shown in Table 1 (middle and lower parts, first rows). The important
difference w.r.t. strong bisimulation is the presence of transitive reflexive closures
over τ -transitions, which correspond to the abstraction of internal activity done
by these two bisimulations. The simple Bess derived from these encodings by
introducing new variables (similarly to strong bisimulation as shown above) were
successfully used as basis for on-the-fly equivalence checking in conjunction with
linear-time local Bes resolution algorithms [32]. For Ltss with a high percentage
of τ -transitions, the encodings of weak bisimulations yield relatively small Bess,
but shift the computation effort to the evaluation of right-hand side boolean
formulas, which involve various forms of τ -closures (p τ∗

→ p′ a→ p′′, p
τ∗.a.τ∗
→ p′,

and p
τ∗
→ p′) having a quadratic worst-case complexity. Practical usage confirmed

that computation of τ -closures, even using optimized algorithms [31], is the most
time-consuming part of the verification process.

An alternative solution for computing τ -closures would be to encode them
directly using boolean equations, yielding the Bess shown on Table 1 (middle

Improved On-the-Fly Equivalence Checking Using BES 203

and lower part, second rows); however, this works only for Ltss without τ -cycles.
To see this, consider the two Ltss M1 = 〈{p0, p1}, {a, τ}, {p0

τ→ p0, p0
a→ p1}, p0〉

and M2 = 〈{q0, q1}, {b, τ}, {q0
τ→ q0, q0

b→ q1}, q0〉, which are obviously not
equivalent modulo any of the three bisimulations considered since they have
different action sets. The comparison of M1 and M2 modulo weak bisimulation
yields the Bes below:

Xp0q0

ν= Yp0q0τ ∧ Yp1q0a ∧ Zp0q0τ ∧ Zp0q1b

Yp0q0τ
ν= Up0q0 ∨ Vp0q0τ Up0q0

ν= Xp0q0 ∨ Up0q0 Vp0q0τ
ν= Vp0q0τ

Zp0q0τ
ν= Wp0q0 ∨ Tp0q0τ Wp0q0

ν= Xp0q0 ∨Wp0q0 Tp0q0τ
ν= Tp0q0τ

Yp1q0a
ν= Vp1q0a Vp1q0a

ν= Vp1q0a Zp0q1b
ν= Tp0q1b Tp0q1b

ν= Tp0q1b

We can easily compute the maximal fixed point solution of this Bes by using
the iterative characterization [27], which consists in initializing all variables to
true and repeatedly evaluating the right-hand sides of equations until the values
of all variables become stable; the process converges in one iteration and all
variables remain true, erroneously indicating that M1 ≈w M2. The problem here
is that τ -closures express the existence of finite τ -sequences in the Ltss, and
hence they correspond to minimal fixed point computations, which cannot be
done accurately by solving the equations of a maximal fixed point Bes. On the
other hand, if we eliminate the two τ -loops in M1 and M2, the Bes becomes:

Xp0q0

ν= Yp1q0a ∧ Zp0q1b Yp1q0a
ν= false Zp0q1b

ν= false

and yields the correct solution false for the variable Xp0q0 . This is a consequence
of the fact that minimal and maximal fixed points have the same interpreta-
tion on acyclic models, as shown in [36] for modal μ-calculus formulas. Thus,
if the Ltss being compared do not contain τ -cycles, the encoding of τ -closures
using maximal fixed point equations is correct. The elimination of τ -cycles by
collapsing their states (also called τ-compression), which preserves both branch-
ing and weak bisimulation, can be performed in linear-time during an on-the-fly
Lts exploration [31], using an adaptation of Tarjan’s algorithm [41] for detecting
strongly connected components (Sccs). To make the Bes encodings in Table 1
correct, it is therefore sufficient to reduce both Ltss on-the-fly by applying τ -
compression simultaneously with the local Bes resolution.

The new Bess obtained in this way for branching and weak bisimulation
have a size comparable (see Figure 3 (a), (b)) with the Bess resulting from the
previous encodings in which τ -closures were computed separately by specialized
algorithms [31]; however, we observed experimentally that their resolution (using
the same algorithms) is about one order of magnitude faster. This is due to the
fact that intermediate results of τ -closure computations are stored as values of
the boolean variables used to encode τ -closures (e.g., variables Upp′qa and Vpqq′a

of the Bes for branching bisimulation), which are retrieved immediately if needed
again during resolution; the only risk with this scheme was a too important
quantity of such variables, which was not observed in practice. We also encoded
as Bess, using similar schemes, the τ∗.a [18] and safety [8] equivalences, which
are weaker than branching bisimulation and slightly less used in practice.

204 R. Mateescu and E. Oudot

4 Local BES Resolution Based on Suspend/Resume DFS

Several local Bes resolution algorithms with a linear-time complexity are avail-
able [1,45,17,32], typically based on Dfs or breadth-first search (Bfs) strategies
for exploring the dependencies between boolean variables, i.e., the edges of the
boolean graph. Here we aim to satisfy the following optimality criterion for local
Bes resolution algorithms, based on the notion of diagnostic [35]: the resolution
must stop as soon as the boolean subgraph already explored contains exactly
one diagnostic (example or counterexample) for the variable of interest. To our
knowledge, all existing algorithms satisfy only a half of this criterion, i.e., they
detect optimally either the presence of examples, or of counterexamples, but not
of both of them. The Lmc algorithm proposed in [17], based on a Dfs traver-
sal of the boolean graph with computation of Sccs, detects counterexamples
optimally and speeds up the search of examples (in maximal fixed point Bess)
without attempting their optimal detection.

In the Bess produced from equivalence checking problems, false constants
(sink ∨-vertices) denote couples of non equivalent states; if their backward prop-
agation along edges in the boolean graph is done as soon as these vertices are
encountered, it leads to an optimal detection of counterexamples, as in the A0
algorithm proposed in [32]. However, when the Ltss being compared are equiva-
lent, the variable of interest is true and the associated diagnostic is an example,
which must be detected as soon as possible during resolution. Using the charac-
terization of examples induced by the μ-calculus formula φex given in Section 2,
we can draw an alternative graph-based characterization: an example for vertex
X is a subgraph containing X in which every ∨-vertex (resp. ∧-vertex) must have
exactly one successor (resp. all its successors) contained in the example. Each
example can be split into maximal Sccs, which are connected acyclically; in the
sequel, we denote them as pseudo-Sccs, since they are special cases of Sccs in
the boolean graph (for instance, a trivial Scc containing a single sink ∨-vertex
denotes a false constant, which is neither an example, nor a pseudo-Scc). These
pseudo-Sccs are the smallest “building blocks” of the examples, and therefore
their presence in the boolean subgraph already explored must be determined as
soon as possible in order to achieve an optimal detection of examples.

To detect pseudo-Sccs, one can adapt Tarjan’s algorithm [41], which relies on
a Dfs traversal. The problem is that a classical Dfs of the boolean graph does
not allow the detection of pseudo-Sccs as soon as they occur, because Tarjan’s
algorithm identifies Sccs only when their root vertex is popped from the Dfs

stack, meaning that the subgraph reachable from the root has been entirely
explored; this subgraph may very well contain other pseudo-Sccs, which could
make several examples to be contained in the boolean subgraph explored at the
end of the resolution, i.e., when the variable of interest will be popped in turn
from the Dfs stack (if it evaluates to true, this variable is the root of the last
pseudo-Scc identified). In order to detect the first pseudo-Scc encountered, it
is necessary to suspend the Dfs for each ∨-vertex when one of its successors
was already visited; if this successor turns out to be false at some later stage
(and thus not part of a pseudo-Scc), and the ∨-vertex is encountered again, it is

Improved On-the-Fly Equivalence Checking Using BES 205

necessary to resume the Dfs by considering some other successor of the ∨-vertex
that may belong to a pseudo-Scc. The exploration of ∧-vertices is done as in the
classical Dfs, since for each ∧-vertex, all its successors must be visited before
attempting to detect a pseudo-Scc containing it.

The local resolution algorithm sr-Dfs that we propose, based on this sus-
pend/resume Dfs, is illustrated below. Taking as input a boolean graph G =
(V, E, L) represented implicitly (i.e., by its successor function) and a variable of
interest x, the algorithm performs iteratively a forward search of G starting at
vertex x. Visited vertices are stored in a set A ⊆ V . The Dfs stack is stored
in a variable dfs and the stack used for detecting pseudo-Sccs is stored in a
variable scc. The variable count keeps a global counter allowing the assignement
of unique Dfs numbers to visited vertices. To each vertex v are associated the
following fields:

– a counter c(v) which counts the number of remaining successors of v to visit
in order to stabilize v;

– a number p(v) recording the index of the next successor of v to be visited
(the successors in E(v) are supposed to be indexed from 0 to |E(v)| − 1);

– a number n(v) representing the Dfs number of v;
– a number l(v) representing the “lowlink” number [41] of v, used to detect if

a vertex is the root of a pseudo-Scc;
– a set d(v) containing the vertices that currently depend upon v;
– a boolean on scc(v) which is true if v is on the scc stack and false otherwise;
– a boolean stop(v) which is true if the Dfs must be suspended for v (i.e., v

is a ∨-vertex and one of its successors has been visited);
– a boolean stable(v), which is true if v is stable;
– a boolean value(v), which represents the value of v (this field is of interest

only if v is stable).

At each iteration of the main while-loop (lines 20–122), the vertex y at the
top of the dfs stack is explored. If y is stable, or the Dfs must be suspended
for y (that is, y is a ∨-vertex and one of its successors has already been visited),
the value of y is back-propagated along its predecessors d (lines 30–62). For
each vertex w which is not stabilized by the back-propagation, the algorithm
must keep on visiting its successors, if w will be visited again during the Dfs

(the variable stop(w) becomes false). Due to the suspend/resume principle, this
propagation phase may influence the contents of the pseudo-Scc currently stored
on the scc stack. Indeed, each ∨-vertex which is visited during the propagation
phase is stored on the scc stack. The definition of pseudo-Sccs requires that
each ∨-vertex must have exactly one successor contained in its pseudo-Scc.
But, as the vertex was not stabilized by the value of the successor which was
propagated, it does not meet any more the definition of the pseudo-Scc. Since
the scc does not contain a pseudo-Scc anymore, it must be cleared. A variable
called purge is used for this purpose and becomes true when the scc stack must be
cleared (two variables min and max are used to determine if scc must be cleared:
min represents the least Dfs number among all the Dfs numbers of vertices

206 R. Mateescu and E. Oudot

Algorithm 1. Local Bes resolution based on suspend/resume Dfs

1: function sr-Dfs (x, (V, E, L)) : Bool is

2: var A, B : 2V ; d : V → 2V ;
3: u, w, y, z : V ; dfs, scc : V ∗;
4: c, p, n, l : V → Nat;
5: stop, stable : V → Bool;
6: value, on scc : V → Bool;
7: count, max , min : Nat;
8: purge : Bool;
9: if L(x) = ∧ then
10: c(x) := |E(x)|
11: else
12: c(x) := 1
13: end if
14: p(x) := 0; stable(x) := false;
15: d(x) := ∅; value(x) := false;
16: A := {x}; count := 0;
17: dfs := push(x, nil);
18: scc := push(x,nil);
19: on scc(x) := true; stop(x) := false;
20: while dfs �= nil do
21: y := top(dfs);
22: n(y) := count;
23: l(y) := n(y);
24: count := count + 1;
25: max := 0;
26: min := n(y);
27: if stable(y) ∨ stop(y) then
28: if d(y) �= ∅ then
29: B := {y};
30: while B �= ∅ do
31: let u ∈ B;
32: B := B \ {u};
33: for all w ∈ d(u) do
34: if ¬stable(w) then
35: if ((L(w) = ∨) ∧

value(u)) ∨ ((L(w) = ∧) ∧
¬value(u)) then

36: c(w) := 0
37: else
38: c(w) := c(w) − 1
39: end if
40: if c(w) = 0 then
41: stable(w) := true;
42: value(w) := value(u);
43: B := B ∪ {w};
44: if n(w) < min then
45: min := n(w)
46: end if
47: else
48: stop(w) := false;
49: if L(w) = ∧ then
50: c(w) := 1;
51: p(w) := 0
52: else
53: E(w) := E(w) \ {u};

54: if n(w) > max
then

55: max := n(w)
56: end if
57: end if
58: end if
59: end if
60: end for
61: d(u) := ∅

62: end while;
63: if max > min then
64: purge := true
65: end if
66: else
67: dfs := pop(dfs);
68: if dfs �= nil then
69: l(top(dfs)) :=

min (l(top(dfs)), l(y))
70: end if
71: end if
72: else
73: if purge then
74: while top(scc) �= top(dfs) do
75: scc := pop(scc)
76: end while;
77: purge := false
78: end if
79: if p(y) < |E(y)| then
80: if L(y) = ∨ then
81: stop(y) := true
82: end if
83: z := (E(y))p(y);

84: p(y) := p(y) + 1;
85: d(z) := d(z) ∪ {y};
86: if z ∈ A then
87: if on scc(z) then
88: if n(z) < n(y) then
89: l(y) := min (n(z), n(y))
90: end if
91: else
92: dfs := push(z, dfs);
93: scc := push(z, scc);
94: on scc(z) := true
95: end if
96: else
97: if L(z) = ∧ then
98: c(z) := |E(z)|
99: else
100: c(z) := 1
101: end if ;
102: p(z) := 0;
103: A := A ∪ {z};
104: dfs := push(z, dfs);
105: scc := push(z, scc);
106: on scc(z) := true
107: end if
108: else
109: if (l(y) = n(y)) ∧ (top(scc) �= y)

then
110: repeat
111: z := top(scc);
112: c(z) := 0;
113: scc := pop(scc)
114: until top(scc) = y
115: end if
116: dfs := pop(dfs);
117: if dfs �= nil then
118: l(top(dfs)) :=

min (l(top(dfs)), l(y))
119: end if
120: end if
121: end if
122: end while;
123: return value(x)

Improved On-the-Fly Equivalence Checking Using BES 207

stabilized during the propagation phase and max represents the greatest Dfs

number among all ∨-vertices towards which a false value has been propagated).
If the vertex y at the top of the dfs stack is unstable or that the exploration

must continue for this vertex, its next unexplored successor z = E(y)p(y) is
visited. Before that, the scc stack is cleared if needed (i.e., if a back-propagation
of a false value took place at some previous iteration of the main while-loop). If
z is a new vertex (lines 96-107), it is pushed on the dfs stack. If z is an already
explored vertex, two cases may appear. Either z is on the scc stack (lines 87-90)
and therefore its lowlink number must be updated, or it is not on the stack (lines
91-95), and therefore it must be explored as if it was a new vertex (i.e., z was
popped from the scc stack after a propagation phase which induced a clearing
of this stack). Finally, if y is unstable and all its successors have been visited,
the algorithm watches if y is the root of a pseudo-Scc (lines 108–120). If this
is the case, the scc stack is cleared from its top until y and each vertex of the
pseudo-Scc is stabilized. Then, y is popped from the dfs stack. Finally, after
termination of the main while-loop, the value computed for x is returned.

Fig. 2. Local resolution of variable X1 using the sr-Dfs algorithm

The execution of algorithm sr-Dfs on the boolean graph considered in Section 2
is illustrated on Figure 2. We observe on this example an optimal behaviour of
sr-Dfs: due to the suspension of the Dfs for the ∨-vertices X3, X5, and X7 when
one of their successors was visited, the subgraph explored by the algorithm (light
grey area) coincides with the example found for vertex X1 (dark grey area), made
of the pseudo-Sccs {X1, X2, X3, X7} and {X5}. The resolution previously shown
on Figure 1 was done using the algorithm A0 [32], which is based on a classical
Dfs without computation of Sccs, and therefore explores a larger subgraph than
sr-Dfs in order to find another, larger example for X1.

Complexity. For boolean graphs G = (V, E, L) without sink ∨-vertices (i.e., for
maximal fixed point Bess without false constants in the right-hand sides of their
equations), the sr-Dfs algorithm has a linear-time complexity O(|V |+ |E|). The
presence of false constants could trigger the reexploration of some vertices (those
present on the portions of the scc stack that were cleared after back-propagation

208 R. Mateescu and E. Oudot

of false constants), increasing the complexity of the algorithm towards quadratic-
time O((|V | + |E|)2), which is the theoretical worst-case. This is the price to
pay for achieving an optimal detection of examples and counterexamples in the
boolean graph. However, the behaviour of the sr-Dfs algorithm that we observed
in practice for equivalence checking (by measuring the number of variables ex-
plored and reexplored) shows that its complexity is close to linear-time.

5 Implementation and Experiments

The Cæsar Solve [32] library of Cadp [22] provides a generic implementa-
tion of several local Bes resolution algorithms. The library was developed using
the Open/Cæsar [21] generic environment for Lts manipulation, which offers
many graph exploration primitives (stacks, hash tables, edge lists, etc.). Bess
are handled by Cæsar Solve by means of their corresponding boolean graphs,
represented implicitly in a way similar to Ltss in Open/Cæsar. This represen-
tation is application-independent, allowing to employ the resolution algorithms
as computing engines for several on-the-fly verification tools of Cadp: the model
checker Evaluator [33], the equivalence checker Bisimulator [5,32], and the
Reductor tool for Lts generation equipped with partial order reductions.

Table 2. Algorithms of Cæsar Solve and their application to equivalence checking

Alg. Bes type Strategy Time Memory Condition

A0 general Dfs O(|V | + |E|) nondeterministic Ltss
A1 Bfs

A2 acyclic one Lts acyclic
A3 disjunctive Dfs O(|V | + |E|) O(|V |) —
A4 conjunctive one Lts deterministic, τ -free
A5 general O(|V | + |E|) nondeterministic Ltss
A6 disjunctive Bfs O(|V |) —
A7 conjunctive one Lts deterministic, τ -free

Table 2 summarizes the local resolution algorithms currently available in
the Cæsar Solve library and their application for equivalence checking within
Bisimulator. All algorithms have a linear complexity w.r.t. the size of boolean
graphs (number of vertices and edges). Algorithms A0, A1, and A5 can solve gen-
eral Bess (without constraints on the structure of equations), A1 being Bfs-based
and thus able to produce small-depth diagnostics. When one Lts is determinis-
tic (for strong equivalence) and τ -free (for weak equivalences), the resulting Bes

is conjunctive and can be solved using the memory-efficient algorithm A4 [32],
which stores only the vertices of the boolean graph (and not its edges), i.e., only
the states of the Ltss (and not their transitions). Also, when one Lts is acyclic,
the resulting Bes is also acyclic (i.e., it has an acyclic boolean graph) and can
be solved using the memory-efficient algorithm A2. The Bfs-based algorithm A7,

Improved On-the-Fly Equivalence Checking Using BES 209

recently added to the library, can be applied to conjunctive Bess and combines
the advantages of algorithms A1 (small-depth diagnostics) and A4 (low memory
consumption) when one Lts is deterministic and τ -free.

The version Bisimulator 2.0 includes the new Bes encodings of weak equiv-
alences defined in Section 3 and the new resolution algorithm sr-Dfs given in
Section 4, which was recently added to Cæsar Solve with the number A8. In
the sequel, we present various performance measures showing the effect of these
two enhancements. The Ltss considered were generated from the demo examples
of Cadp (specifications of communication protocols and asynchronous circuits)
or taken from the Vlts benchmark suite [46].

New encodings of weak equivalences. The new Bes encodings of weak equiva-
lences that we proposed in Section 3 compute τ -closures by means of Bes equa-
tions instead of relying on external, dedicated graph algorithms as the previous
encodings used in Bisimulator 1.0. Figure 3(a)–(b) compares the performance
of the two encodings for branching bisimulation as regards the size of the under-
lying Bess and their resolution time using algorithm A0. As expected, the Bess
produced by the new encoding are larger (more variables but less operators)
because intermediate results of τ -closure computations are stored as boolean
variables, but they are solved faster due to the simpler structure of boolean
equations. Of course, what matters from the end-user point of view is the overall
performance of using sr-Dfs in conjunction with the new Bes encoding; this is
illustrated below.

Resolution using the sr-Dfs algorithm. The series of experiments shown in
Figure 3(c)–(f) compare the behaviour of Bisimulator 1.0 (algorithm A0 and
previous Bes encoding) w.r.t. version 2.0 (algorithm sr-Dfs and new Bes encod-
ing) for branching bisimulation. To improve readability, we separated the Ltss
in two groups according to their number of transitions. When applying version
2.0, we observed reductions of both the number of vertices visited and edges
explored, which determine the memory consumption and the execution time,
respectively. These reductions become more important as the Lts size increases,
as indicated by curves (e) and (f); in particular, the number of transitions tra-
versed can decrease by a factor 8. It is worth noticing that some of the Ltss
compared were not equivalent (e.g., certain erroneous variants of a leader elec-
tion protocol examined in [23]), showing that version 2.0 of the tool exhibits a
good behaviour also for counterexample detection. These experimental results
indicate that the increase in Bes size induced by the new encoding of weak
equivalences is compensated by the reduction achieved using sr-Dfs, leading
to an overall improvement of the on-the-fly verification procedure. As regards
strong bisimulation, sr-Dfs reduces the number of variables explored by up to
25%, as shown in Figure 3(g).

Complexity w.r.t. theoretical worst-case. As pointed out in [18], the on-the-fly
comparison of two nondeterministic Ltss M1 = 〈Q1, A1, T1, q01〉 and M2 =
〈Q2, A2, T2, q02〉 has a worst-case complexity O((|Q1| · |T2|) + (|Q2| · |T1|)). Con-
sidering the Bes formulation of the problem, this complexity can be estimated

210 R. Mateescu and E. Oudot

(a)

 10000

 100000

 1e+06

 1e+07

 1e+08

 300000 400000 500000 600000 700000 800000 900000 1e+06 1.1e+06 1.2e+06 1.3e+06 1.4e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r
o

f
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Branching bisimulation with the two BES encodings

V2.0
V1.0

(b)

 1

 10

 100

 1000

 10000

 300000 400000 500000 600000 700000 800000 900000 1e+06 1.1e+06 1.2e+06 1.3e+06 1.4e+06

ti
m

e
 (

s
e

c
)

LTS size (number of transitions)

Branching bisimulation with the two BES encodings

V2.0
V1.0

(c)

 10

 100

 1000

 10000

 100000

 1e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

B
E

S
 s

iz
e

 (
n

u
m

b
e

r
o

f
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Branching bisimulation (LTSs with less than 100000 transitions)

V2.0
V1.0

(d)

 10

 100

 1000

 10000

 100000

 1e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

B
E

S
 s

iz
e

 (
n

u
m

b
e

r
o

f
o

p
e

ra
to

rs
)

LTS size (number of transitions)

Branching bisimulation (LTSs with less than 100000 transitions)

V2.0
V1.0

(e)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r
o

f
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Branching bisimulation (LTSs with more than 100000 transitions)

V2.0
V1.0

(f)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r
o

f
o

p
e

ra
to

rs
)

LTS size (number of transitions)

Branching bisimulation (LTSs with more than 100000 transitions)

V2.0
V1.0

(g)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r
o

f
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

V2.0
V1.0

(h)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1000 10000 100000 1e+06 1e+07

B
E

S
 s

iz
e

 (
n

u
m

b
e

r
o

f
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Strong bisimulation (complexity w.r.t. theoretical worst-case)

V2.0
V1.0

worst case

Fig. 3. Performance of equivalence checking using Bisimulator 1.0 and 2.0

Improved On-the-Fly Equivalence Checking Using BES 211

in terms of Bes size: the Bess given in Table 1 have a number of boolean vari-
ables proportional to the size of the synchronous product between the two Ltss.
However in practice, the Bess produced from equivalence checking have a much
smaller size (several orders of magnitude) than the theoretical worst-case, as it
is illustrated in Figure 3(h) for strong bisimulation. This also holds for weak
equivalences, in particular for branching bisimulation.

6 Conclusion and Future Work

Building efficient software tools for on-the-fly equivalence checking between Ltss
is a difficult and time-consuming task. The usage of intermediate formalisms,
such as Bess, allows one to separate the concerns of phrasing the verification
problem and of solving it, leading to highly modular verification tools [33,5]. The
two optimizations we proposed, namely the new encodings of weak equivalences
by applying τ -compression on the input Ltss and computing τ -closures using
boolean equations (Section 3) and the new sr-Dfs local Bes resolution algo-
rithm (Section 4) significantly increased the performance of on-the-fly equiva-
lence checking w.r.t. existing approaches.

These optimizations underlie the new version 2.0 of the Bisimulator equiv-
alence checker [32] of the Cadp toolbox [22]. The sr-Dfs algorithm was inte-
grated to the generic Cæsar Solve library [32] for on-the-fly Bes resolution,
which is part of the generic Open/Cæsar environment [21] for Lts manipula-
tion. Local Bes resolution proved to be a suitable alternative way for computing
τ -closures on Ltss produced from protocols and distributed systems, competing
favourably with general transitive closure algorithms. The sr-Dfs algorithm is
able to detect optimally the presence of both examples and counterexamples in
the boolean graph, and appears to be quite effective for comparing Ltss modulo
weak equivalences.

We plan to continue our work along two directions. First, the range of equiv-
alences and preorders already available in Bisimulator 2.0 (strong, branching,
weak, τ∗.a, safety, trace, and weak trace) could be extended by devising Bes

encodings for other weak equivalences, such as Cffd [42] and testing equiva-
lence [10], following the scheme in Section 3. Next, we will pursue experimenting
the sr-Dfs algorithm and study its applicability for solving Bess coming from
other verification problems, such as the model checking of alternation-free modal
μ-calculus and the on-the-fly Lts reduction modulo partial order relations (e.g.,
τ -confluence, τ -inertness, etc.) as formulated in [38].

References

1. Andersen, H.R.: Model checking and boolean graphs. TCS 126, 3–30 (1994)
2. Andersen, H.R., Vergauwen, B.: Efficient checking of behavioural relations and

modal assertions using fixed-point inversion. In: Wolper, P. (ed.) CAV 1995. LNCS,
vol. 939, pp. 142–154. Springer, Heidelberg (1995)

3. Arnold, A., Crubillé, P.: A linear algorithm to solve fixed-point equations on tran-
sition systems. Information Processing Letters 29, 57–66 (1988)

212 R. Mateescu and E. Oudot

4. Ausiello, G., Italiano, G.F.: On-line algorithms for polynomially solvable satisfia-
bility problems. Journal of Logic Programming 10, 69–90 (1991)

5. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: Bisimulator: A modu-
lar tool for on-the-fly equivalence checking. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 581–585. Springer, Heidelberg (2005)

6. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Computation 60 (1984)

7. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. El-
sevier, Amsterdam (2001)

8. Bouajjani, A., Fernandez, J.C., Graf, S., Rodŕıguez, C., Sifakis, J.: Safety for
branching time semantics. In: Leach Albert, J., Monien, B., Rodŕıguez-Artalejo,
M. (eds.) ICALP 1991. LNCS, vol. 510, Springer, Heidelberg (1991)

9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31, 560–599 (1984)

10. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
Formal Aspects of Computing 5, 1–20 (1993)

11. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-
based verification tool for finite state systems. ACM TOPLAS 15, 36–72 (1993)

12. Cleaveland, R., Sokolsky, O.: Equivalence and preorder checking for finite-state sys-
tems. In: Handbook of Process Algebra, pp. 391–424. North-Holland, Amsterdam
(2001)

13. Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Leach
Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 127–138. Springer, Heidelberg (1991)

14. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. FMSD 2, 121–147 (1993)

15. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-
lation equivalence. TCS 311, 221–256 (2004)

16. Dowling, W., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of
propositional horn formulae. Journal of Logic Programming 3 (1984)

17. Du, X., Smolka, S.A., Cleaveland, R.: Local model checking and protocol analysis.
STTT 2, 219–241 (1999)

18. Fernandez, J.C., Mounier, L.: Verifying bisimulations on the fly. In: Proc. of
FORTE 1990 (1990)

19. Fernandez, J.C., Mounier, L.: A tool set for deciding behavioral equivalences. In:
Groote, J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, Springer,
Heidelberg (1991)

20. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking.
FMSD 21, 39–78 (2002)

21. Garavel, H.: Open/cæsar: An open software architecture for verification, simula-
tion, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998)

22. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: Cadp 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

23. Garavel, H., Mounier, L.: Specification and verification of various distributed leader
election algorithms for unidirectional ring networks. SCP 29, 171–197 (1997)

24. Groote, J.F., Keinänen, M.: Solving disjunctive/conjunctive boolean equation sys-
tems with alternating fixed points. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 436–450. Springer, Heidelberg (2004)

Improved On-the-Fly Equivalence Checking Using BES 213

25. Ingolfsdottir, A., Steffen, B.: Characteristic formulae for processes with divergence.
Information and Computation 110, 149–163 (1994)

26. ISO/IEC: Lotos — a formal description technique based on the temporal ordering
of observational behaviour. ISO Standard 8807, Genève (1989)

27. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam
(1952)

28. Larsen, K.: Efficient local correctness checking. In: Probst, D.K., von Bochmann,
G. (eds.) CAV 1992. LNCS, vol. 663, pp. 30–43. Springer, Heidelberg (1993)

29. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
53–66. Springer, Heidelberg (1998)

30. Martin, A.J.: Compiling communicating processes into delay-insensitive VLSI cir-
cuits. Distributed Computing 1, 226–234 (1986)

31. Mateescu, R.: On-the-fly state space reductions for weak equivalences. In: Proc. of
FMICS 2005, pp. 80–89. ACM Computer Society Press, New York (2005)

32. Mateescu, R.: Caesar solve: A generic library for on-the-fly resolution of alter-
nation-free boolean equation systems. STTT 8, 37–56 (2006)

33. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. SCP 46, 255–281 (2003)

34. Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. In:
VERSAL 8, Bertz Verlag, Berlin (1997)

35. Mateescu, R.: Efficient diagnostic generation for boolean equation systems. In:
Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 251–265.
Springer, Heidelberg (2000)

36. Mateescu, R.: Local model-checking of modal mu-calculus on acyclic labeled tran-
sition systems. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 281–295. Springer, Heidelberg (2002)

37. Milner,R.:Communication andConcurrency.Prentice-Hall, EnglewoodCliffs (1989)
38. Pace, G., Lang, F., Mateescu, R.: Calculating τ -confluence compositionally. In:

Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 446–459.
Springer, Heidelberg (2003)

39. Park, D.: Concurrency and automata on infinite sequences. In Theoretical Com-
puter Science. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183.
Springer, Heidelberg (1981)

40. Shukla, S.K., Hunt III, H.B., Rosenkrantz, D.J.: Hornsat, model checking, verifica-
tion and games. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp. 99–110. Springer, Heidelberg (1996)

41. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal of
Computing 1, 146–160 (1972)

42. Valmari, A., Tienari, M.: Compositional failure-based semantics models for basic
lotos. Formal Aspects of Computing 7, 440–468 (1995)

43. van Glabbeek, R.: The linear time — branching time spectrum I. In: Handbook of
Process Algebra, pp. 3–100. Elsevier, Amsterdam (2001)

44. van Glabbeek, R.J., Weijland, W.P.: Branching-time and abstraction in bisim-
ulation semantics (extended abstract). In: Proc. of 11th IFIP World Computer
Congress (1989)

45. Vergauwen, B., Lewi, J.: Efficient local correctness checking for single and alter-
nating boolean equation systems. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994.
LNCS, vol. 820, pp. 304–315. Springer, Heidelberg (1994)

46. VASY. The VLTS benchmark suite,
http://www.inrialpes.fr/vasy/cadp/resources/benchmark.html

http://www.inrialpes.fr/vasy/cadp/resources/benchmark.html

Resource-Aware Verification Using Randomized

Exploration of Large State Spaces

Nazha Abed1, Stavros Tripakis2, and Jean-Marc Vincent1,�

1 LIG, 51, avenue Jean Kuntzmann, 38330 Montbonnot Saint-Martin, France
2 Cadence Laboratories, 2150 Shattuck Avenue, Berkeley, CA 94704

Abstract. Exhaustive verification often suffers from the state-explosion
problem, where the reachable state space is too large to fit in main mem-
ory. For this reason, and because of disk swapping, once the main mem-
ory is full very little progress is made, and the process is not scalable.
To alleviate this, partial verification methods have been proposed, some
based on randomized exploration, mostly in the form of random walks.
In this paper, we enhance partial, randomized state-space exploration
methods with the concept of resource-awareness: the exploration algo-
rithm is made aware of the limits on resources, in particular memory and
time. We present a memory-aware algorithm that by design never stores
more states than those that fit in main memory. We also propose crite-
ria to compare this algorithm with similar other algorithms. We study
properties of such algorithms both theoretically on simple classes of state
spaces and experimentally on some preliminary case studies.

1 Introduction

To verify system correctness, one can proceed by exhaustive verification (e.g.
model checking) or testing. Model checking [1,2,3] has gained wide acceptance
within the hardware and protocol verification communities, and is witnessing
increasing application in the domain of software verification. When the state
space of the system under investigation is finite, model checking may proceed
in a fully automatic, push-button fashion. Moreover, should the system fail to
satisfy the formula, a counter example trace to the error state is produced.
Model checking however is not without its drawbacks, the most prominent of
which is state explosion: the phenomenon where the size of a system’s state space
grows exponentially in the size of its specification. State explosion can render the
model-checking problem intractable for many applications of practical interest.

Testing, on the other hand, is typically performed directly on the implemented
system. This has the advantage of checking the “real” system instead of a model
of it. The disadvantage is that anomalies are detected often too late, resulting
in high costs to correct them. Testing is inherently incomplete, as there is no
guarantee of covering the state space even after several experiments.

� This work is partially supported by the ANR SETIN Check-Bound and the Region
Rhône-Alpes, France.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 214–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Resource-Aware Verification Using Randomized Exploration 215

Researchers have developed a plethora of techniques aimed at curtailing state
explosion, by reducing the amount of memory necessary for states storage or
reducing the state space to explore. Examples of the approaches made to reach
the first goal are hash compaction [4] and bit-state hashing [5] which consists of
encoding the graph states by the memory bits via a hash function. The methods
that aim to reduce the state space include partial-order reduction methods [6];
which are based on the observation that executing two independent events in
either order results in the same global state and symmetry reduction [7]; which
uses the existence of nontrivial permutation group that preserves the state tran-
sition graph. There is also symbolic model checking techniques that operate on
sets of states rather than individual states, and represent such sets symbolically,
for instance, using binary decision diagrams (BDDs) [8]. In this paper we focus
on explicit enumerative state space exploration methods.

Other techniques aim at a partial, i.e., incomplete, exploration of the state
space, in particular, using randomized algorithms, which make decisions based
on outcomes of random experiments such as tossing a fair coin or generating
a random number. Randomized algorithms are extensively used, basically for
two reasons: simplicity and speed [9]. A consequence of using randomization is
that correctness or termination can often be asserted only with some controlled
probability.

The randomized algorithms proposed in the literature are mostly based on
random walks. A random walk on a graph starts from the initial state, and
at each step, chooses with uniform probability a successor of the current state
and visits it. This choice is independent from the traversal history, which is
characteristic of a Markov chain. When the random walk encounters a deadlock
point, it restarts from the initial state. The algorithm terminates when a tar-
get state is reached or when the expected number of the visited states reaches
a certain limit. This method stores only an actual state and does not keep
any information about previously visited states, thus it has very little memory
requirements.

This simple form of random walk was applied first to model-checking by
West [10] and more recently in [11,12,13]. Because it is completely memory
free, the random walk method cannot distinguish between visited and not vis-
ited states, and so it may spend a large amount of time repeatedly visiting the
same states: we call this redundancy. Because of this, covering the entire graph
(or a high portion of it) may need a prohibitively large amount of time. Also, the
frequency (probability) of visits may be very variable from one state to another
(some states are more frequently visited than others). This frequency depends
on the graph structure as well as the algorithm behavior.

Several methods have been proposed to avoid these drawbacks. Some of these
methods try to force exploration direction, like the re-initialization methods that
restart the random walk process periodically to avoid blocking in a small closed
components for a long time. The re-initialization can be made from a random
state of the previous walk and not necessary from the initial state. This has
the advantage to minimize redundancy and reach deep states [14]. The local

216 N. Abed, S. Tripakis, and J.-M. Vincent

exhaustive search combined to random walk [15] explores better some regions
of interest (dense regions for example) which cannot be well explored with only
simple random walk. This may be the case for example if one knows that it
is near a target node. Guided search decides of the next exploration direction
based on general information about the graph and system semantics. In [16], the
authors use a metric to estimate reachability probability of a target node. To
gain in memory and time, the parallelization method of random walk seems to
be very useful and efficient. It explores more states [15] and reduces significantly
the error probability [12].

Other methods use some additional memory to keep a subset of the visited
states. These states are used to report the counter example trace as done in trac-
ing methods or to limit revisits of same nodes and improve the coverage as done
in caching methods [17] [18]. Caching is an exploration algorithm that focuses
on the strategy of nodes storing and deletion from the cache. The exploration
scheme can be deterministic, as in a breadth-first or depth-first search (BFS,
DFS), or random. In [19], the proposed algorithm uses BFS with a randomized
partial storage. When the memory is full, the algorithm proceeds at a lower
speed but does not give up. As reported in [19], this algorithm can save 30%
of the memory with an average time penalty of 100%. Other methods that use
randomization in a verification context include [20,21,22,23,24,25].

All the methods mentioned above that are based on random walk improve
the redundancy of exploration but the cover time can still be very large. In this
paper, we propose methods that aim to further improve exploration by avoiding
redundancy and reducing the cover time. First, we propose a generic scheme
that aims to encompass special instances of algorithms. Then, we propose the
Uniform Random Search (URS) algorithm, which is based on a different selection
function than random walk (RW). While RW is a depth-oriented algorithm, URS
can go in depth, in breadth or in a uniform fashion. We can also control the rate
of depth or breadth exploration by tuning a mixing parameter.

A major novelty of our exploration scheme lies in the fact that it explicitly uses
a parameter N that represents the maximum number of states that can be stored
in main memory at any given time. Thus, our algorithms are resource-aware, and
in particular, memory-aware. Main memory is the main bottleneck in exhaustive
verification, for reasons we explain below. Our scheme tries to overcome this by
explicitly taking into account the resource constraints and using them to make
decisions during the exploration.

The randomized algorithms proposed are sound, which means that if a bug is
found then the model is indeed incorrect. As in [12,13], they are probabilistically
complete, in the sense that if after several iterations no bugs are found, then
the system is correct with some probability which depends on the number of
iterations and visited states.

The rest of the paper is organized as follows: The proposed scheme and algo-
rithm are detailed in section 2. Section 3 gives some general theoretical results
that are projected on two cases of regular graphs. Experimental results are sum-
marized in section 4, while section 5 contains our conclusion.

Resource-Aware Verification Using Randomized Exploration 217

2 Context and Algorithms

We model a system as a directed transition graph G(M, v0,Succ), where, M
is a finite set of nodes representing the system states, v0 is the initial node
(v0 ∈ M) and Succ is the transition function: it takes as input a node v and
returns as output the set of all successors of v. We do not dispose of the entire
transition graph. We can, however, construct and explore it gradually by means
of the initial state and the transition function Succ. We assume that the available
main memory can store at most N states. N can be computed by dividing the
size of the memory, by the size of the memory representation of each state. To
generate randomized algorithms, a pseudo-random numbers generator is given.
The generated numbers can be considered as uniformly distributed in [0, 1], based
on which, other distribution laws can be generated if necessary.

To verify a given safety property stated as an invariant φ, the simplest method
is to explore the graph G and verify φ for each state s ∈ G. If we use an exhaustive
deterministic exploration, the computer’s memory will be rapidly filled by the N
first reachable states (N depends on the available memory as said above). Then,
the computer will typically spend most of its time swapping memory to/from disk
with very few additional states explored. This is clearly non-scalable: running
the model-checker for several days may result in only a few additional visited
states than running it only a few hours. Instead, we choose a memory-aware,
randomized, partial exploration, and repeat it several times with different paths
(consequence of randomization) to cover as many reachable states as possible.

One wishes, naturally, that the randomized algorithm explores the state space
efficiently, i.e., quickly and using reasonable memory resources. Since the memory
size is given and finite, a good exploration is defined mainly according to the
time it takes: one can hope to cover with a randomized algorithm a considerable
percentage of the reachable graph in less time than with the exhaustive algorithm
which will be quickly blocked because of the swapping.

2.1 A Generic Randomized Exploration Scheme

A random exploration algorithm can be cast into the generic scheme shown in
Figure 1. P represents the algorithm parameters, for example the memory size
N , the number of initial parallel runs in the case of a parallel random walk [15],
ect. This last parameter, among others, can be modified during the algorithm
execution according to the available resources and exploration needs. The set I
contains global information on the graph structure, for instance, mean number
of successors per node, mean number of loops, strongly connected components,
etc. Note that this type of information can be collected on the fly and used to
guide and optimize the exploration [16].

A specific algorithm that fits the above scheme is defined by specifying the
stop condition and the two functions select and update. With these three pa-
rameters, one can define many variants of the general algorithm, including many
found in the literature. The stop condition can be, for example, the presence of

218 N. Abed, S. Tripakis, and J.-M. Vincent

V : set of stored nodes;
P : algorithm parameters;
I : global information;
v : node;

V ← V0; //Set of initial nodes
P ← Par; //Algorithm parameters
I ← I0; //Initial global information

While (not stop condition) do
v ← select(V, P, I);
check(v); //verify if the property holds
(V, I) ← update(V, v, P, I);

done

Fig. 1. The general randomized exploration scheme

a deadlock, exhaustion of the expected number of steps or simply reaching a tar-
get state. Some algorithms in the literature emphasize state storage and deletion
strategies (FIFO, LFU, LRU, random ...), like the caching techniques [18] [17],
so they focus in optimizing the update function. The update function modifies
the sets V and I in order to optimize the consumed resources and make the
evolution of the exploration effective. As mentioned in the introduction, our in-
terest is mainly the exploration strategy itself, that is the select function. The
select function chooses at each step the next node v, to be visited from the set
of successors of V ; the already visited states still in memory. This choice can be
guided by the information in I.

In this scheme, the random walk algorithm has as stop condition the reacha-
bility of a deadlock point or the reach of a target node according to the algorithm
goal. The select function is a uniform random choice between the successors of
the current node (the single stored in V), when the update function consists
on simply replacing the current node by the one lastly chosen. In presence of a
deadlock, the current node takes the value of the initial state and so on.

As we are interested in the exploration strategy, we propose a Uniform Ran-
dom Search (URS) algorithm based on a new select function: see Figure 2. We
have a set V of already visited states. V is of size N : that is, the algorithm
ensures that there are never more than N states in V . Initially this set contains
the initial state v0. At each step i, the URS algorithm picks uniformly one visited
state u from V , and then uniformly chooses one successor v of u. Note that this
does not imply a uniform choice from all the visited node successors. If v is not
already visited then it is checked with respect to the safety property and added
to the set of visited states. The algorithm stops, and eventually restarts, when
the memory is full (j = N) or when the expected number of steps, n, is reached.

[14] presents an extended random-walk based algorithm called Deep Random
Search (DRS). The stop condition of DRS does not consider the limited memory

Resource-Aware Verification Using Randomized Exploration 219

Uniform Random Search – URS

V : set of stored nodes;
N : Maximum size of V ;
n : Maximum number of steps;
v, u : nodes;
i, j : integers;

V ← {v0};
i ← 0;
j ← 0;

While ((j ≤ N) and (i ≤ n)) do
u ← pick uniformly a node in V ;
If (Succ(u) �= ∅) then

v ← pick uniformly a node in
Succ(u);
If (v /∈ V) then

check(v);
V ← V ∪ {v};
j ← j + 1;

end If
end If
i ← i + 1;

done

Simplified, Memory-Aware Deep
Random Search – SDRS

V : set of stored nodes;
N : Maximum size of V ;
n : Maximum number of steps;
v : current node;
i, j : integers;

V ← {v0};
v ← v0;
i ← 0;
j ← 0;

While ((j ≤ N) and (i ≤ n)) do
If (Succ(v) = ∅) then

v ← pick uniformly a node in V ;
else

v ← pick uniformly a node in
Succ(v);
If (v /∈ V) then

check(v);
V ← V ∪ {v};
j ← j + 1;

end If
end If
i ← i + 1;

done

Fig. 2. The URS and SDRS algorithms

size and supposes that the set of “non-closed” nodes (i.e., that have at least one
non-visited successor) fits in main memory. In this paper we use a simplified, but
memory-aware, version of DRS, that we call SDRS. Like URS, SDRS can keep
at most N states in memory at any given time. This puts the two algorithms in
the same framework and allows comparisons. SDRS has the same stop condition
as URS. The select and update functions of SDRS are the same as for simple
random walk except that the current node is reset to a node chosen randomly
in V and not to the initial node.

When the main memory is full, the algorithms are stopped, the memory is
emptied and the algorithms are restarted. This can be repeated several times.
The re-initialization can be done from the initial state or from another randomly
chosen state from the set V of states visited during the last exploration. Note
that the initialization from the initial state often does not result in a very high
degree of redundancy because the number of states in each repetition is very large
and can usually match the graph’s diameter. In the rest of the paper, we will

220 N. Abed, S. Tripakis, and J.-M. Vincent

consider two situations in our analysis and experimental results. In one situation
we suppose that the main memory is large enough to contain the entire state
space of the graph under exploration. In this case, we will speak of the versions of
the algorithms URS and SDRS where these do not have to be reinitialized. In the
second, more realistic case for industrial-size examples, the main memory cannot
store the entire state space, and the algorithms are run multiple times, after re-
initialization as described above. In this case, we will denote the algorithms by
RURS and RSDRS to emphasize the fact that they are re-initialized.

2.2 Evaluation Criteria

URS and SDRS are only two of the many possible memory-aware, randomized
exploration algorithms one can think of. The question is, which algorithm is
better, in which cases, and what exactly does “better” mean? To answer these
questions, we need some criteria to evaluate performance of such algorithms. We
define such criteria in two ways: stochastic and experimental.

One useful criterion is mean cover time. The cover time is the number of steps
needed by a given algorithm which starts at the initial state to cover (i.e., visit)
some percentage of the set of reachable states.1 The mean cover time gives a good
indication on the capacity of the algorithm to reach states and explore most of
the graph. Cover time also reflects what can be termed response time, with an
error ε. For example, if one needs a response about the system correctness with
probability of error ε = 0.05, the necessary time for giving this response can be
defined as the cover time of 95% of the graph. Some exploration algorithms will
provide this answer in less time than others.

When the set of reachable states is unknown, we compare the number of cov-
ered nodes (i.e., visited nodes). As the number of the visited nodes increases, the
probability that a node already visited is revisited typically increases (redun-
dancy). It results from this, that the number of newly visited nodes decreases
according to the execution time Te. From this fact, the coverage progression is,
typically, a logarithmic curve according to Te. This is confirmed by our theoret-
ical and experimental results.

Another useful criterion is the minimum reachability probability over all reach-
able nodes. Reachability probability is the probability that a given node v of a
graph G is visited by a given algorithm A, denoted denoted PG,A(v). Note that
the model checking problem can be often seen as searching for a target (e.g.,
error) state. The reachability probability of a target state is thus meaningful.
Due to the fact that the considered exploration algorithms are random, the list
of visited nodes V is a random variable that depends on the algorithm and the
particular graph structure. Thus, the membership of a given node v to V is a
random variable of which the probability PG,A(v) for a given graph G and a

1 For the random walk, in the case of undirected graphs, the mean cover time of any
graph is polynomial [26]. In the case of directed graphs it is in general exponential,
except for some restricted classes [12]. These classes are so restricted that they are
not very interesting for model checking.

Resource-Aware Verification Using Randomized Exploration 221

given algorithm A differs from a node to another. The minimum reachability
probability criterion is the minimum over all nodes of these probabilities:

πmin(G, A) = min
v

PG,A(v)

In general, re-iterating the randomized algorithm improves the probability of
reaching states and finding errors.

Note that reachability probability depends on the resources that are available
to an algorithm A, for instance, the available memory and time. In the case of URS
and SDRS, for example, it depends on parameters N and n. Thus, another useful
criterion is the mean number of covered nodes, for given resource parameters.

In practice, there are several types of graphs, and an algorithm performs dif-
ferently depending on the form of the explored one. To compute precise analytic
results, we have analyzed regular classes of graphs: trees and grids. Regular
graphs are suitable to study analytically the behavior of exploration algorithms
for several reasons:

– Although the model checking graphs are not regular, they contain frequently
regular components [27].

– One can manipulate regular graphs to compute probabilistic measures ana-
lytically, which is practically impossible for graphs of irregular topology.

– By tuning the two parameters of a regular tree (depth and degree), we can
get large or deep graphs and define a density factor suitable to our study.

– Trees and grids constitute two extreme cases of general graphs. In trees, there
are no intersections between the successors, and in grids, there is intersection
between all successors. Other graphs can be considered as an intermediate
case between this two ones.

3 Theoretical Results

This section aims at a theoretical comparison of randomized exploration algo-
rithms in terms of various statistics. More precisely, we investigate exact com-
putations of the mean cover time, the mean number of covered nodes and other
related criteria such as reachability probabilities, for URS and SDRS. We do this
for two simple types of graphs: trees and grids. We first provide some general
results that apply to any graph.

For URS, the ordered sequence Vn = (v1, ..., vn) of visited nodes in n steps can

be represented as a sequence w1,
α1

︷︸︸︷... , w2,
α2

︷︸︸︷..... , w3,
α3

︷︸︸︷..... , ..., wk−1,
αk−1
︷︸︸︷..... , wk

︸ ︷︷ ︸
Wn=(w1,...,wk)

,
αk

︷︸︸︷...

where each wi corresponds to a novel visited node followed by αi redundant
visits, that is the considered sequence Vn is constituted by n − k repeated
nodes interlaced in an ordered set of k distinct nodes wk = (w1, ..., wk). Let
wk−1 = (w1, ..., wk−1) and denote by F (wi) (resp. C(wi)) the set of fathers
(resp. children) of the node wi, i = 1, .., k.

222 N. Abed, S. Tripakis, and J.-M. Vincent

Lemma 1. The probability P(wk, n) to cover node wk in n steps by URS is:

P(wk, n) = α(wk)P(wk, n− 1) + β(wk)P(wk−1, n− 1)

α(wk) =
1
k

k∑

i=1

|C(wi) ∩ wk|
|C(wi)|

, β(wk) =
1

k − 1

∑

v∈F (wk)∩wk−1

1
|C(v)|

Note that α(wk) is a redundancy factor, equal to the probability to revisit a
node at step n (no node is newly covered), while β(wk) is an innovation factor
expressing the probability to cover at step n a new node, which must be wk,
since the set wk is stored in order of visits.

The elementary recursion for SDRS is a bit more complicated than for URS
and one must distinguish closed and open points of exploration. The exploration
is said to be in a closed point at step n, if it has reached a deadlock at step n−1,
it attempted, unsuccessfully, in step n to choose a successor from this deadlock
and so it will be reinitialized in step n + 1 from a uniformly randomly chosen
state of Vn. An open point is a point of the walk which is not a closed point.

Lemma 2. Let P(wk, n, C) (resp. P(wk, n, O, v)) be the probability to cover in
n steps the set of nodes wk and to be, by step n, in a closed point (resp. in an
open point at node v). Then:

P(wk, n, C) =
|D(wk)|

k
P(wk, n − 1, C) +

∑

v∈D(wk)

P(wk, n − 1, O, v)

P(wk, n, O, v) =
∑

u∈F (v)∩wk

[
P(wk, n − 1, O, u)

|C(u)| +
P(wk, n − 1, C)

k|C(u)|

+1wk (v)
(P(wk−1, n − 1, O, u)

|C(u)| +
P(wk−1, n − 1, C)

(k − 1)|C(u)|

)]

where D(wk) is the set of deadlock nodes in wk and 1wk
(v) = 1 if v = wk and

1wk
(v) = 0 otherwise.

The algorithms URS and SDRS will be analyzed, and then compared, with
respect to two criteria. The first is the redundancy of each algorithm due to its
exploration scheme. To compute it, it is not necessary to consider the algorithms
with re-initialization, we compare only the redundancy of the algorithms URS
and SDRS applied without repetition. This redundancy analysis will be done
in function of the time n, or the number of successive steps, needed to cover a
given number k of nodes in the considered graph. The direct relation between
redundancy and covering time is the following:

redundancy =
n− k

n

In fact, an exploration algorithm, at each step of its run, can only visit a novel
node or repeat an already visited one. In the first case, either the time n and the

Resource-Aware Verification Using Randomized Exploration 223

number of covered nodes k are incremented by one, while in the second case the
time is incremented but not the number of covered nodes, which increases the re-
dundancy. The mean cover time will be exactly and efficiently computed meaning
the recursions provided in the further section.

The second criterion of analysis is the mean number of covered nodes. This will
be considered for the repeated versions of the algorithms, i.e. RURS and RSDRS.
This corresponds to the more actual case, when the graph to be explored is too
large with respect to the memory size. In this case our algorithm URS reinitialize
itself each time the memory is full. Note that in [14], the re-initialization of the
algorithm DRS is not considered and the case of memory shortage is not studied.
Here we place the two algorithms in the same context where re-initialization is
applied each time the number of covered nodes reaches a prefixed threshold,
which is, in our case, the memory size.

In the context of large graphs, it is not easy to reach a coverage level up
to 100%. Also, the graph sizes can be unknown, so, we consider the number of
covered nodes rather than the coverage level. The algorithms RURS and RSDRS
will be compared in terms of the mean number of covered nodes for a given time
of exploration, which constitutes an equivalent criterion to the mean time for a
given coverage that we applied for URS and SDRS. The mean number of covered
nodes, function of time, will be exactly computed for RURS and RSDRS thanks
to theorem 1.

Note that in our theoretical study we will consider hereafter graphs with
medium to small sizes but which are more than 5 times greater than the consid-
ered memory size. The results obtained on these prototypes can then be scaled
to greater graphs taking the same proportions of memory to graph size. The use
of large size graphs is very heavy because the theoretical formula are recursive
in the steps number and take much memory size to be computed.

3.1 Case of Trees

We consider an m-ary tree of depth h, that is, every non-leaf node has m succes-
sors, and every path from the root to a leaf has length h. Recall that n denotes
the number of successive steps in a run of the algorithm.

The elementary recursion in lemma 1 (resp. in lemma 2) leads to a much more
simplified one, depending only on the numbers of nodes of wk in each level of
the tree and not on wk itself. Consider Kn = (K1

n, ..., Kh
n), the vector of random

variables expressing the number of explored nodes at each level j = 1, ..., h, at
step n, and let Purs(Kn = k) the probability to cover the vector k = (k1, ..., kh)
in n steps by URS algorithm. For SDRS, we distinguish Psdrs(Kn = k, C) and
Psdrs(Kn = k, O) that denote the probabilities of covering k in the closed and
open cases respectively. For URS, for example, the aggregation (summation) of
the elementary recursion in lemma 1 on the set of all sequences wk having kj

nodes in the level j, j = 1, ..., h, gives the following simplified recursion :

Purs(Kn = k) = α(k) Purs(Kn−1 = k) +
h∑

j=1

βj(k) Purs(Kn−1 = k − 1j)

224 N. Abed, S. Tripakis, and J.-M. Vincent

where k − 1j = (k1, ..., kj − 1, ..., kh), 1 ≤ j ≤ h. In the r.h.s. of this equation,
as in the elementary one, two terms appear. The first one P

R
urs(Kn = k) =

α(k) Purs(Kn−1 = k) is a redundancy term, while the second P
I
urs(Kn = k) =

∑h
j=1 βj(k) Purs(Kn−1 = k − 1j) is the innovation term. The repetition factor

α(k) is given by α(k) = mkh+k−1
mk . The innovation ones are βj(k) = mkj−1−kj+1

m(k−1) .
The mean time TA(k) to cover k nodes by an algorithm A (URS or SDRS)

can be expressed in function of the innovation probabilities as following:

TA(k) =
∑

|k|=k

TA(k), TA(k) =
∞∑

n=k

nP
I
A(Kn = k)

With some further investigations, the mean times Turs(k) and Tsdrs(k) of cov-
ering k by URS and SDRS, respectively, are given by recursive formula.

Applying the previous result, we obtain the mean cover time computed exactly
for URS and SDRS and shown in Figure 3 (left) for three parameterized trees.
The notation T (h, m) means that the considered tree is of height h and degree
m. Note that the mean cover time is plotted in function of the coverage level
(percentage of reachable nodes that are covered) rather than in terms of number
of covered nodes. Given the fact that our primary interest here is redundancy, the
case of a set of covered nodes going beyond the memory size is not considered.
It was, then, possible to make the comparison up to the full coverage where we
obtained the more significant difference in term of mean cover time between the
two algorithms.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Coverage

M
e

a
n

 t
im

e

Theoretical mean time, URS vs. DRS, Tree

URS, T(10,2)

DRS, T(10,2)

URS, T(6,4)

DRS, T(6,4)

URS, T(5,6)

DRS, T(5,6)

0 2000 4000 6000 8000 10000
0

500

1000

1500

Time

M
e
a
n
 n

b
.
o
f
c
o
v
e
re

d
 n

o
d
e
s

Theoretical mean nb. of covered nodes, Memory: 15%

URS, T(10,2)

DRS, T(10,2)

URS, T(6,4)

DRS, T(6,4)

URS, T(5,6)

DRS, T(5,6)

Fig. 3. Mean cover time (left) and mean number of covered nodes (right) for Trees

We can see in Figure 3 that the URS algorithm takes on average less time
than SDRS to cover a given proportion of the graph. This is observed mainly for
proportions more than 70% and for large trees. We define the density factor DF
of an m-ary tree of depth h by the ratio m

h . In fact, the higher the density factor
is, the larger the difference between the cover times of the algorithms is. In the
case of a “thin” tree, which has small DF (typically < 0.05), SDRS can perform
better than URS but this can be obtained only for extremely thin graphs.

Resource-Aware Verification Using Randomized Exploration 225

In the following of this section we return to the more actual case, when the
graph to explore is too large with respect to the memory size. We start by noting
the relation in lemma 3, that holds for all algorithms A on all graphs G, between
the probability PA(Kn = k) to cover k nodes in n steps and the reachability
probabilities PA(v|Kn = k) to have, in n steps, reached a node v and covered
exactly k nodes. Note that, in the case of trees, these last probabilities depend
only on the node level i and not on the node v itself, because of symmetry. In
the case of a grid, we must compute the probability to reach corner and non
corner nodes at each level i.

Lemma 3

PA(Kn = k) =
1

k

∑

v∈G

PA(v|Kn = k)

As we said above, the criterion considered here is the mean number of covered
nodes function of time. Thanks to lemma 3, this can be computed basing on
reachability probabilities that we first compute by returning to the elementary
recursions of the algorithms. In fact, as previously, by summing these recur-
sions on the set of the sequences wk, containing the node i and having in each
level j = 1, ..., h, kj nodes, one obtains recursive formula for the reachability
probabilities Purs(i|Kn = k), Psdrs(i|Kn = k, C), Psdrs(i|Kn = k, O), and then
Psdrs(i|Kn = k) = Psdrs(i|Kn = k, C) + Psdrs(i|Kn = k, O). These probabilities
are defined exactly as previously except the fact that the node i is now consid-
ered to be covered. Note that these probabilities are associated with URS and
SDRS without repetition and then computed for a number of covered nodes k
less than the re-initialization threshold (the memory size) N . For example, for
URS, one obtains, with γ(k) = 1

m(k−1) , :

Purs(i|Kn = k) = α(k) Purs(i|Kn−1 = k) +
h∑

j=1

βj(k) Purs(i|Kn−1 = k − 1j)

+ γ(k)
[
Purs(i − 1|Kn−1 = k − 1i) − Purs(i|Kn−1 = k − 1i)

]

Once these probabilities are calculated, one sets

PA(i, s) =
∑

|k|≤N

PA(i|Ks = k), P
∗
A(i, s) =

∑

|k|=N

PA(i|Ks = k)

where N denotes the memory size and A denotes indifferently one of the algo-
rithms URS or SDRS. Their repeated versions will be noted RA. Then, the mean
number of covered nodes of RA in function of time n is given in the theorem 1:

Theorem 1. If N is the memory size or a prefixed threshold of re-initialization,
then the mean number of covered nodes by RA is given in function of time n as:

Cov(n) =
h∑

i=0

mi
PRA(i, n), where

PRA(i, n) = PA(i, n) +

n∑

n1=M

[P∗
A(i, n1) + (1 − P

∗
A(i, n1))PRA(i, n − n1)]

226 N. Abed, S. Tripakis, and J.-M. Vincent

Figure 3 (right) shows the evolution of the number of covered nodes in func-
tion of time. These curves, representing the behavior of the repeated algorithms
RURS and RSDRS, are plotted for three trees. The repeated algorithms are
experimented for a memory size (N) of 15% w.r.t. the size of the graph. We
have considered other memory sizes (10% and 20%), but the results are simi-
lar: RURS algorithm performs, clearly, better than RSDRS, especially near to
the total coverage rate. We observe also that the difference between RURS and
RSDRS in the number of covered nodes is more important as more as the DF
is greater.

Note that by using the reachability probabilities PA(i, n) (resp. PRA(i, n)),
one can compute the minimum reachability probabilities for URS and SDRS
(resp. for RURS and RSDRS) in function of time. This criterion can be very
interesting in practice if, in order to detect efficiently an eventual bug in the
system, which corresponds to a defective node in the modeling graph, one can
take account of the worst case where the bug is localized in a node of minimum
reachability probability. Note that the number of such nodes can be great as in
the case of tree like graphs.

3.2 Case of Grids

We place ourselves here in the context of multi-dimensional grid. As in the pre-
vious section, we are interested in efficient computations of statistics like the
mean cover time and the mean number of covered nodes for URS and SDRS.
We will analyse this matter basing on the fundamental recursion in lemma 1
and 2. We first note that all possible (macroscopic and then less difficult to com-
pute) recursion for URS or SDRS should be a summation of the corresponding
elementary one on some suitably chosen set Sk of sequences wk: the coefficients
in the elementary recursion must be constant on Sk and the set of the wk−1’s,
when wk ∈ Sk, must be easy to identify. For clarity sake, we analyse in details
the equation in lemma 1 for our algorithm URS. The coefficients α(wk) and
β(wk) in this recursion must be constant on Sk and the set of the wk−1’s, when
wk ∈ Sk, must be easily parameterizable. This seems to be very difficult to ob-
tain, or impossible, even in the case of infinite, oriented, grid, but this problem
will be overcome as explained below. In this case the output degree of the nodes
is the same, say d, and one has:

α(wk) =
∑k

i=1 |C(wi) ∩ wk|
k.d

, β(wk) =
|F (wk) ∩ wk−1|

(k − 1).d

The difficulties to sum the elementary recursion satisfied by URS and SDRS,
are due essentially to the great rate of communications (intersections) in the case
of the grid. However, this is the same reason for which these recursions are useful
in practice to calculate exact exploration statistics in this case, especially by
meaning some managements. In fact due to intersections, the number of ordered
sequences, with distinct nodes, generated by the algorithms is reasonable in
many cases of study. Note also that the sizes of grids to be considered are in
general little, as are grids in model-checking domain.

Resource-Aware Verification Using Randomized Exploration 227

Figure 4 gives the results of comparisons of the mean covering time for three
grids, where G(L, d) means that the grid is of degree d and the length of each
side is L+1. It is clear that the URS algorithm outperform SDRS. Its superiority
is even more clear than in the case of graphs without intersections (tree).

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Coverage

M
e

a
n

 t
im

e

Theoretical mean time, URS vs. DRS, Grid

URS, G(2,8)

DRS, G(2,8)

URS, G(7,3)

DRS, G(7,3)

URS, G(11,2)

DRS, G(11,2)

0 2000 4000 6000 8000 10000
50

100

150

200

250

300

350

Time

M
e

a
n

 n
b

.
o

f
c
o

v
e

re
d

 n
o

d
e

s

Theoretical mean nb. of covered nodes, Memory: 15%

URS, G(16,2)

SDRS, G(16,2)

URS, G(7,3)

SDRS, G(7,3)

URS, G(4,4)

SDRS, G(4,4)

Fig. 4. Mean cover time (left) and mean number of covered nodes (right) for Grids

Moreover, for the repeated algorithms RURS and RSDRS, the mean number
of covered nodes has been plotted in function of time for different grids. The
reported result in Figure 4 corresponds to a memory size of 15% w.r.t. the size
of the graph. As for trees, the algorithms RURS and RSDRS are experimented
for three grid graphs and for three memory sizes (N) of 10%, 15% and 20% w.r.t.
the size of the graphs. The results are similar for the three memory sizes: the
performances RURS are clearly better than RSDRS. The superiority of RURS
is more marked for high coverage and great values of the DF . This superiority
is, again, more clear for grids than for trees.

4 Experimental Results

We complement our theoretical analysis with a set of experimental results. We
implemented the two algorithms URS and SDRS on the model checker IF [28]
and ran them on several examples. Several measures were computed for each
algorithm. The examples have been chosen according to the experimental needs.
First, to compute the mean cover time, we have chosen some examples of medium
size, in order to be able to repeat the algorithms a sufficient number of times to
achieve full coverage of the reachable state space. These examples have differ-
ent density factors, which allows us to analyse their behavior according to this
parameter. Second, in order to compare the randomized algorithms with the
exhaustive BFS algorithm implemented in IF, we have used the same examples,
with more processes and/or data, to get graphs of very large (unknown) sizes.

Our implementations of URS and SDRS use a hash table to keep visited
nodes V . In this work, we have described the URS and SDRS algorithms, but

228 N. Abed, S. Tripakis, and J.-M. Vincent

our implementation is more general, following the generic scheme, in particular
in terms of the select function. Other variants of this scheme apart from URS
and SDRS will be reported in future work. Our implementation allows the user
to define the rate of leaves or internal nodes to be explored –which reflects
depth- or breadth-oriented exploration– by tuning a mixing parameter. Choosing
this parameter appropriately may require an a-priori knowledge of the graph
structure (density and diameter), although, in some cases, this parameter may
be computed and adapted on the fly.

4.1 Cover Time

Each algorithm was tested on different graph examples: the Quicksort algo-
rithm, the Token Ring Protocol, Fischer’s Mutual Exclusion Protocol and a
Client/Server Protocol. The computer architecture was a Intel Xeon quadri-
processors, 1GHz, 4Mo cache and 8Go memory. Table 1 shows the size (i.e.,
number of states) and the diameter (i.e., length of the longest acyclic path)
of each example. The table also shows the density factor of the graph of each
example, defined as DF = m

h , where h is the graph diameter and m is the
graph degree: m is computed approximately by reference to a regular tree of size
M ≈ mh. Thus, for a graph of size M , we let m = h

√
M .

Table 1. Graphs description

Example Quicksort Token Fischer Server

Size (no. states) 6032 20953 34606 35182

Diameter 19 72 14 28

DF (density factor) 0.083 0.016 0.150 0.052

For each example, we repeated the experiment 100 times and we computed the
mean cover time of 60%, 70%, 80%, 90% and 100% of the graph. The resulting
times (in seconds) are reported in Table 2. We observe that the URS algorithm
performs better except for the Token example. But even in this example URS
performs better for 100% coverage.

4.2 Resource-Aware vs. Exhaustive Verification

We have also experimented on very large graphs of unknown reachable size.
These have been obtained by scaling-up the number of processes and/or data of
the Token, Fischer and Server examples. Here we also compared URS and SDRS
with an exhaustive BFS algorithm. Note that URS and SDRS re-initialize in
these examples, since the state space does not fit in main memory: thus we denote
them by RURS and RSDRS in the plots that follow. The number of explored
states was collected over all runs and is plotted in Figure 5 as a function of time.

BFS stagnates as it approaches the limit of the the number of states that
can fit in main memory. URS and SDRS go beyond this limit, and can explore

Resource-Aware Verification Using Randomized Exploration 229

Table 2. Mean cover time (seconds)

Cov. level Algo Quicksort Token Fischer Server

60% URS 0.389 3.283 1.841 4.490

60% SDRS 0.641 0.752 4.070 7.441

70% URS 0.609 4.301 2.765 5.507

70% SDRS 0.871 1.084 5.726 8.893

80% URS 0.882 5.744 3.809 6.821

80% SDRS 1.411 1.584 8.173 11.966

90% URS 1.703 8.047 5.955 9.974

90% SDRS 4.202 2.480 13.327 19.158

100% URS 7.723 21.247 46.097 41.452

100% SDRS 12.459 25.221 125.091 99.460

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9
x 10

5

Time (min)

N
b
.
o
f
c
o
v
e
re

d
 n

o
d
e
s

Number of covered nodes, Token

RURS

RSDRS

BFS

BFS limit after 9h50

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Time (min)

N
b
.
o
f
c
o
v
e
re

d
 n

o
d
e
s

Number of covered nodes, Fisher

RURS

RSDRS

BFS

BFS limit after 9h50

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

6

Time (min)

N
b

.
o

f
c
o

v
e

re
d

 n
o

d
e

s

Number of covered nodes, Server

RURS

RSDRS

BFS

BFS limit after 9h50

Fig. 5. The number of covered nodes evolution

up to 40% more nodes. Notice that the BFS limit occurs at a different number
of nodes for each of the three case studies, even though they all use the same
amount of main memory. This is because in each case study the amount of bytes
needed to store a single state is different: it is higher in Token than in Server,
and slightly higher in Server than in Fischer.

We observe that in the case of Fischer the randomized algorithms also stagnate
after a certain amount of time. According to what we observed in our previous
experiments on medium-size graphs, this happens when reaching close to 90% of
the graph. In this case, exploring the “last” states becomes increasingly difficult
because of redundancy.

5 Conclusions and Future Work

We have proposed resource-aware randomized state space exploration as a direc-
tion for research in scalable verification methods. In particular, we have proposed
the URS algorithm that we believe to be the first memory-aware exploration
scheme, that explicitly uses main memory resource limits to guide its behavior.
Also, URS is not performing a typical random walk, in the sense that it may

230 N. Abed, S. Tripakis, and J.-M. Vincent

choose to “branch” from different nodes along a random walk path. We have
proposed comparison criteria such as mean cover time and used these to compare
URS with a simplified version of the DRS algorithm proposed in [14]. We have
also shown via experiments, that these two algorithms, when repeated several
times, can explore a state space of more than 40% in addition to that explored
by an exhaustive exploration based on breadth-first search.

As part of future work we would like to experiment with industrial case stud-
ies, for instance, from the hardware or software domains. We would also like to
implement and test other resource-aware verification algorithms. For instance,
instead of re-initializing when the memory is full, we could have a scheme where
some states in the visited set V are removed and replaced by new states. Different
policies to choose which states to remove could then be envisaged.

References

1. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

2. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8, 244–263 (1986)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

4. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995)

5. Holzmann, G.J.: An analysis of bistate hashing. In: PSTV. IFIP Conference Pro-
ceedings, vol. 38, pp. 301–314. Chapman & Hall, Boca Raton (1995)

6. Nalumasu, R., Gopalakrishnan, G.: An efficient partial order reduction algorithm
with an alternative proviso implementation. Formal Methods in System Design 20,
231–247 (2002)

7. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9, 77–104 (1996)

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS, pp. 428–439. IEEE Computer Society,
Los Alamitos (1990)

9. Rabin, M.O.: Probabilistic Algorithms, pp. 21–39. Academic Press, Inc., Orlando
(1976)

10. West, C.H.: Protocol validation by random state exploration. In: Protocol Specifi-
cation, Testing and Verification, pp. 233–242. North-Holland, Amsterdam (1986)

11. Owen, D., Menzies, T.: Lurch: a lightweight alternative to model checking. In:
SEKE, pp. 158–165 (2003)

12. Haslum, P.: Model checking by random walk. In: ECSEL Workshop (1999)
13. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D.

(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)
14. Grosu, R., Huang, X., Smolka, S.A., Tan, W., Tripakis, S.: Deep random search

for efficient model checking of timed automata. In: Monterey Workshop. LNCS,
vol. 4888, pp. 111–124. Springer, Heidelberg (2006)

Resource-Aware Verification Using Randomized Exploration 231

15. Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic algorithms for dis-
tributed memory model checking. Electr. Notes Theor. Comput. Sci. 89 (2003)

16. Kuehlmann, A., McMillan, K.L., Brayton, R.K.: Probabilistic state space search.
In: ICCAD, pp. 574–579. IEEE, Los Alamitos (1999)

17. Geldenhuys, J.: State caching reconsidered. In: Graf, S., Mounier, L. (eds.) SPIN
2004. LNCS, vol. 2989, pp. 23–38. Springer, Heidelberg (2004)

18. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-space caching revisited. In:
Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 178–191.
Springer, Heidelberg (1993)

19. Tronci, E., Penna, G.D., Intrigila, B., Zilli, M.V.: A probabilistic approach to auto-
matic verification of concurrent systems. In: APSEC, pp. 317–324. IEEE Computer
Society, Los Alamitos (2001)

20. Lin, F.J., Chu, P.M., Liu, M.T.: Protocol verification using reachability analysis:
the state space explosion problem and relief strategies. SIGCOMM Comput. Com-
mun. Rev. 17, 126–135 (1987)

21. Edelkamp, S., Lafuente, A., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer,
Heidelberg (2001)

22. Groce, A., Visser, W.: Model checking java programs using structural heuristics.
SIGSOFT Softw. Eng. Notes 27, 12–21 (2002)

23. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. Int. J. Softw. Tools Technol. Transf. 6, 117–127 (2004)

24. Sankaranarayanan, S., Chang, R., Jiang, G., Ivancic, F.: State space exploration
using feedback constraint generation and Monte-Carlo sampling. In: ESEC-FSE
2007, pp. 321–330. ACM, New York (2007)

25. Chockler, H., Farchi, E., Godlin, B., Novikov, S.: Cross-entropy based testing. In:
FMCAD 2007, pp. 101–108. IEEE, Los Alamitos (2007)

26. Feige, U.: A tight upper bound on the cover time for random walks on graphs.
Random Struct. Algorithms 6, 51–54 (1995)

27. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space
exploration. In: FMICS 2005, pp. 98–105. ACM, New York (2005)

28. Bozga, M., Fernandez, J.C., Ghirvu, L., Graf, S., Krimm, J.P., Mounier, L.: If: A
validation environment for timed asynchronous systems. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 543–547. Springer, Heidelberg (2000)

Incremental Hashing for Spin

Viet Yen Nguyen1 and Theo C. Ruys2

1 RWTH Aachen University, Germany
http://www-i2.cs.rwth-aachen.de/~nguyen/

2 University of Twente, The Netherlands
http://www.cs.utwente.nl/~ruys/

Abstract. This paper discusses a generalised incremental hashing
scheme for explicit state model checkers. The hashing scheme has been
implemented into the model checker Spin. The incremental hashing
scheme works for Spin’s exhaustive and both approximate verification
modes: bitstate hashing and hash compaction. An implementation is
provided for 32-bit and 64-bit architectures.

We performed extensive experiments on the BEEM benchmarks to
compare the incremental hash functions against Spin’s traditional hash
functions. In almost all cases, incremental hashing is faster than tra-
ditional hashing. The amount of performance gain depends on several
factors, though.

We conclude that incremental hashing performs best for the (64-bits)
Spin’s bitstate hashing mode, on models with large state vectors, and
using a verifier, that is optimised by the C compiler.

1 Introduction

An explicit state model checker is a model checker where all states are explic-
itly represented in the state space. Explicit model checking is sometimes called
stateful state space exploration, especially when checking reachability or safety
properties (e.g. deadlocks, assertion violations).

Central to stateful state space exploration is the process of state matching:
for every encountered state, it should be checked whether the state has already
been visited or not. As the run-time of exploration is linear in the number of
transitions (i.e. the amount of newly encountered states and re-visited ones),
it is obvious that state matching should be as fast as possible. Typically, hash
tables are used to store states. Upon exploration of each state, the hash table is
consulted to check whether that state has already been explored or not.

The access to a hash table is through a hash function. Given a key k, a hash
function h computes the hash code h(k) for this key. This hash code h(k) corre-
sponds to the address in the hash table, where this key k should be stored. For
model checking, this k is typically the (binary) representation of a state, called
the state vector. Most traditional hash functions compute h(k) by considering
all elements of k. For example, if k is a string, a typical hash function h would
compute h(k) on the basis of all individual characters of k.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 232–249, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Incremental Hashing for Spin 233

With respect to state space exploration, two observations can be made. Firstly,
the size of a state vector is usually substantial. State vectors of several hundreds
of bytes are not exceptions. This means that computing a traditional hash code
for such states can become quite expensive. Secondly, when exploring the state
space in a structured manner (e.g. depth first search), the transitions between
two consecutive states is local: only a small part of the state changes with respect
to the previous state.

This last observation is the idea behind so called incremental hash functions,
which use the hash code of a previous key to compute the hash code for the new
key. The application of incremental hashing within a model checker is not new.
Mehler and Edelkamp [11] implemented an incremental hashing scheme in the
model checker StEAM, a model checker for C++. However, their incremental
hashing scheme is only practicable for hashing (large) stacks and queues incre-
mentally. We have improved their hashing scheme by generalising it for hashing
vector-based data structures (like state vectors) incrementally by using cyclic
polynomials from [2].

This improved scheme was originally developed for MoonWalker [14]1 a
software model checker for CIL bytecode programs, i.e. .Net applications. Unfor-
tunately, after implementing our incremental hash function into MoonWalker,
initial tests showed no measurable performance gain. We studied this observa-
tion using a profiler and found out that the stake of hashing in MoonWalker

is extremely small [12]. Other tasks that have to be performed for each state
(e.g. garbage collection, state compression, etc.) take much more time. Any per-
formance gain in hashing would therefore not be visible in the total running
time.

The model checker Spin [6] is arguably one of the fastest explicit state model
checkers available. The current version of Spin uses two traditional hash func-
tions: one composed by Bob Jenkins [20] and one composed by Paul Hsieh [19].
For Spin verifiers – unlike for bytecode model checkers – hashing accounts for a
substantial amount of the running time.

We have implemented our generalised incremental hashing scheme into Spin

5.1.4. The incremental hashing scheme works for checking safety properties
(-DSAFETY) for both 32-bit and 64-bit architectures. Furthermore, it works in
exhaustive mode and both approximate modes: bitstate hashing and hash com-
paction. We performed numerous experiments on the BEEM benchmarks [16]
to compare the incremental hash functions against Spin’s traditional hash func-
tions. From these experiments we learnt that incremental hashing is faster than
Spin’s traditional hash implementations without sacrificing too much accuracy.

The amount of performance gain depends on several factors:

– the verification mode: exhaustive or approximate,
– the architecture on which the verification is run: 32-bit or 64-bit,
– the size of the state vector, and

1
MoonWalker was previously known as mmc: the Mono Model Checker. Due to
several name clashes, mmc has recently been renamed to MoonWalker.

234 V.Y. Nguyen and T.C. Ruys

– the optimisation parameters used for the gcc compiler: the default setting
(-O0) or the most aggressive optimisation setting (-O3), and

– the verifier arguments, e.g., hashtable sizes, maximal search depth.

Incremental hashing performs best for (64-bit) bitstate hashing mode, with larger
state vectors and using an optimised verifier.

The rest of the paper is organised as follows. In section 2, we first discuss
some related work in the context of (incremental) hashing. Section 3 presents
the general incremental hashing scheme: both the intuition of the method and
an implementation in C are discussed in detail. Section 4 explains how we have
implemented the method in Spin and discusses the experimental settings of the
benchmark runs that we have conducted. In section 5 we present the results of
the benchmark runs and we discuss the outcome of the experiments. Finally, in
section 6 we summarise the results and give pointers for future work.

2 Related Work

The hash table is the cornerstone of stateful state space exploration. Accesses
to a hash table are in amortised O(1) time. Although this is a good worst-case
time-complexity, the constant costs are high if a bad hash function is chosen.
A good hash function should fulfill the following requirements [10]:

– Fast. The computation of the hash function should be efficient and fast.
– Accurate. To avoid a large number of address collisions, the hash values

should distribute evenly over the range of the hash function.

With respect to accuracy, the following rule of thumb is often used: “one bit
change in the key should result in half of the bits flipped in its hash code”.

A well known hash function for hashing arrays is the rolling hash function
[1]. Given a ring R, a radix r ∈ R and a mapping function T that maps array
elements to R, the rolling hash code for an array a = a0 . . . an is computed as
follows:

H(a) = T (a0) + rT (a1) + . . . + rnT (an) =
n∑

i=0

riT (ai) (1)

A possible suitable ring R is Z/B, where B is a prime number and is also the
amount of buckets in the hash table. This specialisation of the rolling hash
function is called hashing by prime integer division [2].

It is not difficult to see that the rolling hash function is prone to overflow,
especially due to the power operations with the radix. Remedying overflow is
costly. A recursive formulation of the rolling hash code is less prone to overflow:

H(a0) = T (a0) (2)
H(ai) = rH(ai−1) + T (ai) 1 ≤ i ≤ n (3)

Note that the radixes are reversely mapped to the array elements when com-
pared to equation 1, and therefore hash codes derived from the recursive formu-
lation should not be matched against hash codes derived from the non-recursive
formulation.

Incremental Hashing for Spin 235

2.1 Incremental Hashing

Karp and Rabin [8] describe an incremental recursive hash function for fast
string pattern matching by using recursive hashing by prime integer division.
Their idea is to reuse the hash code of the previous unmatched substring for
the calculation of the shifted substring. In [2], this is generalised for matching
of n-grams.

The rolling hash function is not only amenable for incremental recursive hash-
ing, but also incremental linear hashing. The idea behind incremental linear
hashing, is that the contribution of an array element is independent of the con-
tributions of other array elements. In case of an array change, the influence of
the old array element is known and thus can be removed, followed by adding
the influence of the new array element [2]. In [11], this is expressed as follows.
Consider an array k = v0 . . . vi . . . vn and its successor k′ = v0 . . . v′i . . . vn, then
the hash code of k′ can be computed as follows:

H(k′) = H(k)− riT (ki) + riT (k′
i) (4)

Depending on the ring chosen, the power operation with a large index i can eas-
ily lead to overflow. Thus using this hashing scheme for arbitrary modification
of large arrays is impractical. For stacks and queues however, [11] describes a
rewritten version of that formula for push and pop operations with the power
operation removed. They tested it in their StEAM model checker, and got at
least a speedup factor by 10 compared to non-incremental hashing. Note that
this speedup was achieved with fixed-sized stacks of eight megabyte. It is log-
ical to assume that the speedup factor will be much lower with with arbitrary
sized stacks.

2.2 SPIN

Spin [21,6] is a state-of-the-art explicit state model checker, which is used as a
reference for other model checkers. With respect to memory efficiency and verifi-
cation time, Spin is hard to beat. Spin provides many ways to tune and optimize
its verification runs. Most of these optimisation features can be enabled via com-
pilation flags for the C compiler (e.g. gcc). See for details chapter 18 of [6].2

Spin supports three verification modes. The most commonly used verification
mode is the exhaustive mode, where all states are stored until the memory to
store the states is exhausted. Spin provides state compression techniques to fit
more states in the same amount of memory.

For the cases where there is not enough memory to store all (compressed)
states, Spin supports two lossy, approximate verification modes, which are both
heavily based on hashing functions: bitstate hashing and hash compaction. A
good survey and extensive discussion on various approximate methods can be
found in [10].

2 As this paper is concerned with tuning and optimizing Spin verification runs, we use
several of these compilation parameters, usually prefixed with -D.

236 V.Y. Nguyen and T.C. Ruys

Bitstate hashing. Holzmann’s bitstate (sometimes called supertrace)hashing [4,5]
algorithm works as follows. Under the assumption that the number of slots in the
hash table is high in comparison to the number of reachable states, then it is pos-
sible to identify a state by its address in the hash table. In this case, a single bit
suffices to indicate whether a state has already been visited or not.

The coverage of bitstate hashing can be improved (on the expense of time) by
using k different, independent hash functions for the same hash table. A state is
considered visited before if the bits for all k hash functions are set. This variant of
bitstate hashing is called k-fold bitstate hashing. Triple hashing [3] improves upon
this scheme by using three hash values to generate k hashes. For bitstate hashing
to be effective, the accuracy of the hash function(s) involved should be high.

Initially, Spin used k = 2 by default, but since October 2004, Spin’s default
is set to k = 3. Of course, the variable k can be set to larger values using a
run-time option.

Bitstate hashing in Spin is enabled using the -DBITSTATE parameter.

Hash compaction. Wolper and Leroy [15] introduced hash compaction, a indi-
rection variant of bitstate hashing. The idea of hash compaction is to store the
addresses of the occupied bit positions in the bitstate table, rather than storing
the whole array itself.

For hash compaction, the hash table is taken to be very large (e.g. 264 bits),
much too large to fit in memory. Now the address computed by the hash function
(e.g. 64 bit-wide) is stored as being a normal state. Hash compaction is thus also
viewed as a lossy form of state compression. Hash compaction is more accurate
than k-fold bitstate hashing (for small k).

Hash compaction in Spin is enabled using the -DHC parameter.
The current versions Spin uses two traditional, linear hash functions:

– Jenkins. Since long, Spin uses Jenkins hash function [20,7] for both its ex-
haustive and approximate verification runs. Jenkins’ hash function is con-
sidered a fast but still quite accurate hash function.

For bitstate hashing, Spin uses 96-bit and 192-bit versions of Jenkins’
hash function. For exhaustive verification, a part of the 96-bit or 192-bit
hash value is used.

– Hsieh. Since version 5.1.1 (Nov 2007), Spin has adopted an alternative hash
function by Hsieh [19]. Although perhaps not as accurate as Jenkins, Hsieh’s
hash function can in some cases be much faster.

Hsieh’s hash function can be enabled with the parameter -DSFH, which
stands for ‘Super Fast Hash’. But Hsieh’s hash function is also automati-
cally selected for 32-bit safety runs (-DSAFETY). To speed up such verification
runs even further, Spin’s default mask-compression of states is disabled for
-DSAFETY runs as well. Hsieh’s hash function is not only fast, but its imple-
mentation is also suitable for aggressive optimisation by the gcc compiler
(i.e. using -O2 or -O3).

Currently, there only exists a 32-bit version of Hsieh’s hash function.
Furthermore, in the current version of Spin, Hsieh’s hash function can only
be enabled for checking safety properties.

Incremental Hashing for Spin 237

3 Generalised Incremental Hashing Scheme

This section presents the intuition behind the incremental property, the time-
complexity of the incremental hashing scheme and implementation variants. A
few concepts, like polynomial rings, from field theory are used to express this.
Readers unfamiliar with this may consult [2, Appendix A].

3.1 Incremental Property

Consider a Galois field (also known as a finite field) R = GF (2)[x]/(xw +1), the
ring consisting of polynomials in x whose coefficients are 0 or 1, reduced modulo
the polynomial xw +1. Make sure that w matches the computer’s word size, thus
32 for 32-bits words. The polynomials are represented by w-sized bitmasks by
placing the coefficients of xi at the ith bit, creating an one-on-one correspondence
between polynomials in R and the bitmasks.

As a radix, the polynomial xδ ∈ R is chosen. By setting radix r = xδ, the
following incremental hash function is derived from equation 4:

H(k′) = H(k) + xδiT (ki) + xδiT (k′
i) (5)

The minus operation from equation 4 is replaced by an +, because addition and
subtraction are the same in ring R. Now, consider an arbitrary member q ∈ R
with q(x) = qw−1x

w−1 + qw−2x
w−2 + . . . + q0. The multiplication of the x and

q(x) is the following:

xq(x) = qw−1x
w + qw−2x

w−1 + . . . + q0x (6)

= qw−2x
w−1 + qw−3x

w−2 + . . . + q0x + qw−1 (7)

Equation 7 is equation 6 reduced to modulo xw + 1. The multiplication by
polynomial x results to a left rotate of the coefficients in q(x), hence the name
cyclic polynomials. For most platforms, this is an efficient operation. At least all
x86-architectures include native bit rotate instructions. Additions in equation
5 can be implemented using a exclusive-or operation, which is available on all
processor platforms.

In order to reduce the amount of operations, equation 5 can be rewritten by
applying the associativeness of the + operation, as shown in the next equation:

H(k′) = H(k) + xδi(T (ki) + T (k′
i)) (8)

So far, only one variable is left unmentioned, namely δ. The choice of a δ for the
radix xδ was experimentally evaluated by [2]. No δ clearly stood out. For δ = 1,
the incremental hashing function worked well and they used is subsequently for
their experiments. For this reason, we also take 1 for δ.

Furthermore, as described in [2], cyclic polynomials have one weakness. They
have a cycle length of size w for which it computes the hashcode of zero. For
example, if a key of size 2w starts with w elements followed by another identical
sequence of w elements, then the hashcode for that key is zero. In practise, such
keys are extremely rare in model checking, as their size must be exactly nw-sized,
where n ∈ N, and that its contents should be also w-cyclic as well.

238 V.Y. Nguyen and T.C. Ruys

3.2 Time-Complexity

The time-complexity of the incremental hashing scheme is differently defined com-
pared to traditional hash functions. A fast traditional hash function has a time-
complexity in O(N), where N is the array length. The incremental hash function
hash function has a time-complexity of O(1) for one change to the array. Theo-
retically, the incremental hash function is faster if the amount of changes between
successive states is smaller than N . This is usually the case in model checking,
where the amount of changes is usually 1 or 2 and almost never near N .

3.3 Variants

From the perspective of implementation, there are several variants of the incre-
mental hashing scheme at one’s disposal, namely by reordering the coefficients
with respect to the bitmask and by using different mappings of function T in
equation 4.

Reordering the Bitmask. The coefficients of polynomials in R were initially
mapped to a bitmask whose position coincide with those in the bitmask. This
mapping was chosen to allow efficient left-rotate operations on bitmasks as the
equivalent to multiplication by x. Another ordering of coefficients that works
equally well is by ordering the coefficients reversely: the coefficient of xj is placed
at the 64− j bit position. Such a mapping results to right-rotate operations as
the equivalent to multiplication by x.

Different Mappings. Our initial experiments with the incremental hashing
scheme led to high collision rates. This was caused by the initial mapping of
function T in equation 5, for which we originally chose the identity function.
The source of the collisions lied in the entropy of changes between state vectors
of successive states. Transitions are often of low entropy, like changing changing
a variable from 0 to 1 or add 1 upon variable i. The incremental hash function
recalculates the hash function upon such changes, but since the entropy is low,
the resulting hash would not differ much as one desires for a good hash function.
In order to increase entropy, we experimented with different functions of T .

Our approach is by using integer hash functions as a T . We initially used
Wang’s integer hash [22], but its constant time-complexity is relatively big com-
pared to that of the incremental hashing scheme, and we observed in experiments
that the slowdown made incremental hashing slower than traditional hashing
functions.

The function T has therefore be very fast. An integer hash function for which
we observed that it works out well is Knuth’s multiplicative constant [9]. This
hash function simply multiplies the input by a word-size dependent constant. For
32-bit words, the constant is 2654435769, and for 64-bits words, the constant is
11400714819323198485. The constant is calculated by multiplying one-bitmask
(i.e., the largest number in the sized word) by the golden ratio (

√
5 − 1)/2) ≈

0.618034 . In [9], Knuth shows this integer hash function has a high likelyhood
of spreading the bits through the word, thereby increasing entropy.

Incremental Hashing for Spin 239

Other constants are also applicable. We also experimented with the magic
constants of the FNV hash funnction [18], which is 2166136261 for 32-bits words
and 14695981039346656037 for 64-bits words. These FNV constants are ‘magic’,
because their effectiveness was only evaluated by emperic evidence.

3.4 Implementation Examples

Here we present several C implementations of the incremental hashing scheme.
The implementation below is one for SPIN:

c_hash(int i, unsigned int old, unsigned int new) {
const unsigned long knuth = 11400714819323198485UL;
const unsigned long fnv = 14695981039346656037UL;
unsigned long diff = ((new)*knuth) ^ ((old)*knuth);
chash ^= ((diff << i) | (diff >> (64 - i)));

#if defined(BITSTATE) || defined(HC)
unsigned long diff2 = ((new)*fnv) ^ ((old)*fnv);
chash2 ^= ((diff2 >> i) | (diff2 << (64 - i)));
chash3 ^= ((diff >> i) | (diff << (64 - i)));

#endif
}

For exhaustive search, only Knuth’s multiplicative constant with left-rotatable
bitmask are used. For hash compaction, a second hash value is maintained using
FNV’s constant. For bitstate hashing, triple hashing is used by maintaining a
third hash value using a right-rotable bitmask in combination with Knuth’s
multiplicative constant. We will refer to this implementation as CHASH (where
the ‘C’ stands for cyclic).

Another triple incremental hashing approach is by viewing three words as one
word, upon which a bit rotate is performed. This approach is less optimisable
because no processor supports a native bit rotate operation for triple-word sized
values. We experimented shortly with this approach but found out it always
being outperformed by the above variant.

4 Experimental Method

We originally implemented CHASH in Spin 4.3.0, and the results with it are
described [12]. Since that thesis and this paper, version Spin 5.1.4 came out and
we ported CHASH to it. We subsequently used this newer implementation and
benchmarked it extensively against Spin’s default hash functions.

4.1 Implementation

The difficulty of implementing CHASH varies from language to language. In Moon-

Walker, which is written in C#, the implementation was extremely easy due to
object encapsulation of the state vector, and therefore also all writes calls to it.

240 V.Y. Nguyen and T.C. Ruys

Spin however is implemented in C and therefore lacks the expressive means
for encapsulated state vector access. The state vector in Spin is accessible via
the global point now and is updated by writing to an offset from this pointer.
In order to detect all these writes, which can happen throughout the generated
verifier, we had to add a call to the incremental hashing function just before the
state vector is updated at that point.

Besides this, we had to overcome several other issues due to specifics in the C
language. For one, our implementation uses the memory address of the written
variable as the index argument to function c_hash. This however did not work
for the Promela datatypes unsigned int and bit. Spin uses bitfields as the
underlying C datatype, and bitfields have by definition no addresses. To solve
this, we created a virtual memory mapping for unsigned ints and bits. When the
verifier is generated, the address of the variable in the symboltable is used as
the index instead. We could not use a virtual mapping for all variables because
of arrays. Accesses to arrays in Spin may have an expression as indexer and its
value is only known at runtime, not when the verifier is generated.

Also, we could not just use the memory addresses, but we had to use mem-
ory offsets. Using offsets is important for approximative methods, because the
approximation of the explored state space can slightly differ due to changed
memory addresses. These are suspectible to operating system semantics. Offsets
are relative and remain the same between runs.

Additionally, we optimised the time-complexity at a small cost of memory.
When the DFS search backtracks, CHASH has to be called for a reverse operation
in order to calculate the correct corresponding hash code. However instead, we
store the hash values on the DFS stack, and write this value as the corresponding
hashcode.

4.2 BEEM Benchmarks

We used the BEEM benchmark suite for evaluating the effectiveness of the incre-
mental hashing scheme. This suite consists of 57 models, ranging from communi-
cation protocols, mutual exclusion algorithms, election algorithms, planning and
scheduling solvers and puzzles [13,16]. The model are parameterised to yield dif-
ferent problem instances. The total amount of models is 298 and 231 of them are
in Promela. We initially evaluated all the Promela models for our experiments.
From this evaluation, we made a selection of the 40 largest models that did not
run out of memory. These were subsequently used for comparing the different
hashing configurations.

Due to space constraints, we are only able to present a selection of the results
from these 40 models. We chose to present the ten best problem instances, the
ten worst problem instances and averages of the forty selected BEEM benchmark
suite, thereby giving a nuanced perspective of the results.

4.3 Setup

We ran the benchmarks on nine identical nodes, each equipped with Intel Xeon
2.33 GHz processors and 16 GB memory. When compiling the models, we always

Incremental Hashing for Spin 241

enabled the -DSAFETY and -DMEMLIM=15000. As arguments to pan, we fixed the
maximal search depth to 20 ∗ 106 and disabled stopping on errors and printing
unreachable states. Furthermore, we conducted runs with the following compiler
flags and pan arguments:

Compiler flags Pan arguments
-m32 -DHASH32 -DSFH -w26
-m32 -DHASH32 -DSPACE -DNOCOMP -w26
-m32 -DHASH32 -DCHASH -DNOCOMP -w26
-m32 -DHASH32 -DSPACE -w26
-m32 -DHASH32 -DCHASH -w26
-m32 -DHASH32 -DBITSTATE -w32 -k3
-m32 -DHASH32 -DBITSTATE -DCHASH -w32 -k3
-m32 -DHASH32 -DHC -w27
-m32 -DHASH32 -DHC -DCHASH -w27

These are 32-bits runs. Additionally, we also ran a series of 64-bits runs using
the following compiler flags and pan arguments:

Compiler flags Pan arguments
-m64 -DHASH64 -DSPACE -w28
-m64 -DHASH64 -DCHASH -w28
-m64 -DHASH64 -DBITSTATE -w36 -k3
-m64 -DHASH64 -DBITSTATE -DCHASH -w36 -k3
-m64 -DHASH64 -DHC -w29
-m64 -DHASH64 -DHC -DCHASH -w29

All configurations were run twice, namely without compiler optimisations (-O0)
and with (-O3). We furthermore used the GNU profiler on all configurations. All
these configurations come down to the total amount 2400 of verifications runs
of which we captured their output, processed it and analysed it to present it in
the next section.

5 Results and Discussion

Our benchmark runs generated extensive results which we cannot put all here.
We therefore highlight the interesting observations and in case of interest, the
full result set is downloadable from the incremental hashing webpage [17].

5.1 Exhaustive Verification

In 32-bits exhaustive verification we compared CHASH and Jenkins’s against
Hsieh’s. The result is shown in table 1. The first column is the state vector
size, followed by the state space size in 106 and transitions in 106. Collision rates
are indexed against the state space. They can be higher than 100 because Spin
counts each chain hit in the collision chain as a collision. The verification times
of Jenkins’s and CHASH are indexed against Hsieh’s.

The table shows that the average gain of CHASH over Hsieh’s is three percent
when the models are compiled with -O3 and 25 percent when the models are
compiled with -O0. Later on, we shall discuss the differences between -O0 and
-O3. Most of the ten worst performing models have higher collision rates when
used with CHASH in comparison to Jenkins’s. It is also noteworthy that Jenkins’s

242 V.Y. Nguyen and T.C. Ruys

Table 1. 32-bits exhaustive search BEEM benchmark results of Hsieh versus Jenkins
(Jen.) and CHASH

sv
(b

yt
es

)

st
at

es
(·1

0
6)

tr
an

sit
io

ns
(·1

0
6)

Hsie
h

(%
)

Je
n.

(%
)

CHA
SH

(%
)

Hsie
h

(s
ec

)

=
10

0%

Je
n.

(%
)

CHA
SH

(%
)

Hsie
h

(s
ec

)

=
10

0%

Je
n.

(%
)

CHA
SH

(%
)

model collrate time -O3 time -O0
elevator planning.2 48 11 93 939 51 434 47 81 79 54 87 66
firewire link.5 404 6 12 3 3 3 24 104 86 34 105 61
adding.6 28 8 12 41 2 2 6 92 87 7 95 78
telephony.4 52 12 64 26 20 28 28 99 89 37 106 71
train-gate.3 136 20 57 16 16 15 49 101 90 73 102 67
schedule world.3 44 4 44 105 21 20 18 101 90 26 102 75
phils.6 84 14 143 93 92 96 86 108 91 109 103 68
peterson.6 44 9 33 13 12 15 16 99 92 21 101 77
lann.3 128 5 24 8 8 11 24 98 94 33 104 77
fischer.6 56 8 33 17 11 11 17 102 94 24 101 76
...
protocols.5 100 3 8 2 2 16 6 106 100 9 101 74
elevator2.3 40 8 55 166 22 185 20 105 101 28 99 73
driving phils.4 84 11 30 6 6 106 15 103 102 22 104 72
elevator.3 140 19 70 25 24 37 74 108 103 112 103 79
lamport nonatomic.4 180 16 60 19 19 82 69 98 105 96 101 73
msmie.4 100 7 11 2 2 2 10 103 106 16 104 79
bridge.2 60 9 27 12 12 12 21 103 107 36 102 89
sorter.4 60 13 27 11 8 23 19 102 112 28 103 87
reader writer.3 160 1 4 1 1 1 16 99 126 29 101 94
Average 98 12 47 52 17 47 30 102 97 43 102 75

Table 2. 64-bits exhaustive search BEEM benchmark results of Jenkins (Jen.) versus
CHASH

sv
(b

yt
es

)

st
at

es
(·1

0
6)

tr
an

sit
io

ns
(·1

0
6)

Je
n.

(%
)

CHA
SH

(%
)

Je
n.

(s
ec

)

=
10

0%

CHA
SH

(%
)

Je
n.

se
c)

=
10

0%

CHA
SH

(%
)

model collrate time -O3 time -O0
brp.5 148 11 20 1 3 29 61 50 90
brp.4 148 7 13 1 4 21 64 35 90
driving phils.4 88 11 30 2 9 22 88 46 83
hanoi.3 116 14 43 5 7 39 91 91 86
phils.6 140 14 143 23 23 108 92 243 86
elevator2.3 prop4 52 8 55 5 9 26 92 57 88
elevator2.3 52 8 55 5 9 26 92 58 86
mcs.5 68 29 116 10 11 63 93 142 87
train-gate.3 164 20 57 4 29 49 93 123 97
telephony.7 64 22 114 9 15 55 93 130 87
...
schedule world.3 52 4 44 5 12 23 96 52 87
bakery.5 48 7 25 2 31 13 97 30 82
lann.3 140 5 24 2 2 24 97 54 99
msmie.4 180 7 11 0 1 14 97 31 92
production cell.4 304 10 42 5 6 50 97 138 97
elevator.3 152 19 70 6 9 74 97 177 93
protocols.5 112 3 8 1 7 8 98 17 96
frogs.4 68 17 36 2 2 27 98 60 92
train-gate.2 164 18 50 3 30 42 99 108 97
reader writer.3 276 1 4 0 1 19 99 39 100
Average 120 12 47 4 20 34 94 79 91

Incremental Hashing for Spin 243

Table 3. 32-bits bitstate search BEEM benchmark results of Jenkins (Jen.) versus
CHASH

st
at

es
(·1

0
6)

=
10

0%

Je
n.

(%
)

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(·1
0
3 st

at
es

/s
ec

)

=
10

0%

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(·1
0
3 st

at
es

/s
ec

)

=
10

0%

CHA
SH

(%
)

model coverage -O3 rate -O3 -O0 rate -O0
firewire link.5 6 100 100 18 322 116 36 167 161
production cell.4 10 100 100 42 237 109 92 109 153
phils.6 14 100 100 86 166 109 134 107 144
train-gate.3 20 100 100 43 465 109 78 253 139
train-gate.2 18 100 100 38 474 108 69 259 137
elevator2.3 8 100 47 25 302 107 36 211 122
fischer.6 8 100 100 20 426 107 30 280 128
elevator planning.2 11 100 100 37 311 106 56 204 132
telephony.7 22 100 97 52 419 106 84 262 133
brp.5 11 100 100 18 603 105 32 337 135
...
driving phils.4 11 100 41 17 653 95 27 413 121
elevator.3 19 100 100 68 274 95 121 154 125
lann.4 13 100 99 55 231 92 105 120 123
bridge.2 9 100 100 24 392 92 40 230 106
msmie.4 7 100 100 12 605 92 20 359 123
frogs.4 17 100 100 26 662 90 42 412 111
protocols.5 3 100 63 8 413 89 12 265 111
sorter.4 13 100 89 21 625 89 34 383 117
reader writer.3 1 100 91 16 47 76 30 25 102
hanoi.3 14 100 0 33 429 4 55 260 6
Average 12 100 91 31 421 98 51 265 123

has the lowest collision rates (as reflected in the average collision rate), followed
by CHASH and Hsieh’s.

In 64-bits mode (see table 2) we see that CHASH is on average six percent faster
than Jenkins’s for -O3 and nine percent faster for -O0. This gain is visible on all
models for both -O0 and -O3, even though the collision rates of CHASH are either
on par or worse.

5.2 Bitstate Hashing

For bitstate hashing, we denote the accuracy of the search by the coverage
indexed against the full state space size, which we know from the exhaustive
verifications. Furthermore, we indexed the verification times of CHASH against
Jenkins’s here.

With 32-bits bitstate hashing (see table 3), we observed with -O3 an average
performance decrease of two percent using CHASH. With -O0 there is a perfor-
mance gain by 23 percent. With 64-bits bitstate hashing (see table 4, we see a
performance gain of CHASH by 26 percent (with -O3) and 61 percent (with -O0).

The coverage rates of Jenkins’s shows that it is a good hash function in terms of
accuracy. CHASH performs less in that respect, as few models like hanoi.3,
protocols.5, sorter.4 and reader writer.3 have relatively low coverage rates. We
found out this is due to the low entropy input as discussed earlier. Though this is
combated using integer hash multiplication, in rare cases as these it is yet insuf-
ficient. We found out that additional effective measures are reordering the decla-
ration of variables and/or making the state vector more sparse by adding dummy

244 V.Y. Nguyen and T.C. Ruys

Table 4. 64-bits bitstate search BEEM benchmark results of Jenkins (Jen.) versus
CHASH

st
at

es
(·1

0
6)

=
10

0%

Je
n.

(%
)

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(·1
0
3 st

at
es

/s
ec

)

=
10

0%

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(·1
0
3 st

at
es

/s
ec

)

=
10

0%

CHA
SH

(%
)

model coverage -O3 rate -O3 -O0 rate -O0
train-gate.2 18 100 100 76 234 163 138 129 207
production cell.4 10 100 100 77 130 160 158 63 214
train-gate.3 20 100 100 79 250 149 155 128 208
production cell.3 6 100 100 67 87 145 131 44 186
firewire link.5 6 100 92 42 141 144 77 77 234
phils.6 14 100 100 208 69 137 305 47 196
bakery.7 28 100 100 83 332 136 130 211 161
fischer.6 8 100 100 40 206 135 67 125 170
brp.5 11 100 100 38 285 134 65 168 176
lamport nonatomic.4 16 100 100 111 146 132 179 91 176
...
schedule world.3 4 100 100 38 113 120 60 71 149
bridge.2 9 100 100 41 229 120 70 134 133
peterson.6 9 100 100 42 206 120 59 146 141
lamport.7 5 100 100 25 186 119 35 134 140
adding.6 8 100 100 19 399 115 25 309 129
elevator planning.2 11 100 100 78 147 114 117 98 156
at.4 7 100 100 32 203 113 49 136 150
sorter.4 13 100 88 39 335 112 64 207 151
reader writer.3 1 100 91 26 29 98 46 16 114
protocols.5 3 100 37 19 165 58 26 119 78
Average 12 100 97 61 205 126 100 130 161

variables can be quite effective. Depending on the model, we gained nearly on par
coverage. A patch against Spin that generates such models can be downloaded
from the incremental hashing webpage. Note that these more unconventional mea-
sures are not universally effective and we measured that in general they decrease
coverage. For this reason, they are not enabled with CHASH by default.

5.3 Hash-Compaction

The results from hash-compaction are similar to those from bitstate hashing.
Here too we measured a small decline in performance when CHASH is used in
32-bits mode and -O3 and a significant performance improvement of 26 percent
when -O0 is used. See table 5.

With 64-bits hash-compaction (see table 6), we see that CHASH improves by ten
percent over Jenkins’s with -O3 and 29 percent with -O0. For the same reasons
as for bitstate hashing, we see that here too a lower coverage goes accompanied
by lower performance.

5.4 Optimisation Flags

While we ran our benchmarks with and without compiler optimisations enabled,
Spin users usually do without them. XSpin does not enable them by default and
users usually forget to enable them manually. Based our results, we see that
enabling optimisations (i.e. -O3) makes a significant difference, as it reduces the

Incremental Hashing for Spin 245

Table 5. 32-bits hash-compaction search BEEM benchmark results of Jenkins (Jen.)
versus CHASH

st
at

es
(·1

0
6)

=
10

0%

Je
n.

(%
)

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(s
ta

te
s/

se
c)

=
10

0%

CHA
SH

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(s
ta

te
s/

se
c

=
10

0%

CHA
SH

(%
)

model coverage -O3 rate -O3 -O0 rate -O0
firewire link.5 6 100 100 16 372 122 33 181 180
phils.6 14 100 100 63 229 116 109 132 149
train-gate.2 18 100 100 32 565 110 63 283 140
train-gate.3 20 100 100 36 554 110 71 278 139
production cell.4 10 100 100 36 275 109 84 119 158
telephony.7 22 100 97 37 587 109 70 312 137
telephony.4 12 100 100 22 566 106 40 304 140
lamport nonatomic.4 16 100 72 45 357 105 91 177 141
mcs.5 29 100 93 42 692 105 72 405 126
peterson.6 9 100 100 14 621 105 22 393 123
...
lamport.7 5 100 100 7 661 97 11 423 113
driving phils.4 11 100 41 12 923 95 23 489 127
protocols.5 3 100 63 6 561 94 10 327 119
lann.4 13 100 99 47 267 93 98 128 126
elevator planning.2 11 100 100 29 398 91 48 237 121
bridge.2 9 100 100 19 497 90 35 264 110
msmie.4 7 100 100 9 826 89 16 433 123
sorter.4 13 100 89 16 840 83 29 455 111
reader writer.3 1 100 91 15 50 75 29 26 99
hanoi.3 14 100 0 25 583 4 47 306 8
Average 12 100 91 23 582 98 44 322 126

Table 6. 64-bits hash-compaction search BEEM benchmark results of Jenkins (Jen.)
versus CHASH

st
at

es
(·1

0
6)

=
10

0%

Je
n.

(%
)

CHA
SH.

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(s
ta

te
s/

se
c)

=
10

0%

CHA
SH.

(%
)

tim
e

Je
n.

(s
ec

)

Je
n.

(s
ta

te
s/

se
c

=
10

0%

CHA
SH.

(%
)

model coverage -O3 rate -O3 -O0 rate -O0
phils.6 14 100 100 83 174 131 150 95 179
production cell.4 10 100 100 39 256 128 91 110 150
train-gate.2 18 100 100 36 500 123 73 246 142
train-gate.3 20 100 100 39 507 122 84 237 149
firewire link.5 6 100 92 19 312 120 38 157 156
mcs.5 29 100 100 54 535 118 94 308 146
lamport nonatomic.4 16 100 100 49 328 117 98 165 136
elevator2.3 8 100 100 23 332 116 39 199 131
telephony.7 22 100 100 45 493 116 78 281 135
production cell.3 6 100 100 34 168 116 78 74 137
...
lamport.7 5 100 100 12 391 106 17 273 118
msmie.4 7 100 100 13 541 104 23 313 128
bridge.2 9 100 100 23 400 104 43 216 107
driving phils.4 11 100 83 16 690 104 27 416 126
schedule world.3 4 100 100 19 220 102 34 126 114
adding.6 8 100 100 9 836 101 12 634 111
sorter.4 13 100 88 21 628 99 34 388 111
elevator planning.2 11 100 100 36 317 97 62 185 129
reader writer.3 1 100 91 19 40 94 35 21 101
protocols.5 3 100 37 9 343 51 14 226 68
Average 12 100 97 29 429 110 53 250 129

246 V.Y. Nguyen and T.C. Ruys

verification time nearly by an half. This substantial improvement costs only a
few seconds additional compilation time.

5.5 Memory Consumption

We also extracted memory utilisation statistics for runs3 with and without
CHASH. For both -O0 and -O3, we measured an average memory overhead by
CHASH of six percent compared to runs with Jenkins’s. This is caused by our im-
plementation, which maintains hash values on the DFS stack such that a reverse
CHASH operation does not have to be computed.

5.6 Profiler Runs

We also wanted to find out how much CHASH improves and whether there is more
room for improvement. We ran a profiled version on our selection of the BEEM
benchmark suite. For pointing out the interesting points, it sufficies to only present
the combined profiler data from 32-bits and 64-bits exhaustive verification. See
figures 1 and 2. In this figure, d_hash is Jenkins’s hash function, c_hash is the
CHASH implementation, hstore is the hashtable storage function, new_state is the
DFS routine, compress is the mask-compression function, do_transit performs
one transition from the current state and misc are all other functions.

(a) Jenkins (b) CHASH

Fig. 1. Percentual stakes of five most time-consuming functions for BEEM benchmarks
compiled with -O0

The stake of hashing with Jenkins’s is for both -O0 and -O3 clearly visible in
the total running time. When CHASH is enabled, it eliminates hashing as a visible
stake in the total running time. For -O3, the stake of CHASH is near zero and
therefore not depicted in the figure.

Also noteworthy is that compress and hstore have a significant stake for
both -O0 and -O3. The former is in Spin 5.1.4 disabled by default in case of
32-bit exhaustive verification of safety properties. We measured the impact of
this in our benchmarks, and detected that disabling mask-compression improves
3 We were not able to include runs with compress disabled for measuring memory

overhead, as Spin does not output detailed memory statistics when compress is
disabled.

Incremental Hashing for Spin 247

(a) Jenkins. (b) CHASH

Fig. 2. Percentual stakes of five most time-consuming functions for BEEM benchmarks
compiled with -O3

performance by ten percent in -O3 and 36 percent in -O0. This however comes at
the cost of increased memory consumption. Unfortunately, this is not measurable
because runs with compress disabled do not output detailed memory statistics.

5.7 Extremely Long Runs

We also experimented with models that either run out of memory or have high
verification times. We specifically reran the BEEM benchmark with 64-bits bit-
state enabled, profiler enabled, compiler optimisations enabled, hashtable size of
236, maximal depth of 20 million and k = 3. The table below is a selection of
five models with the longest verification times:

model sv
size

(by
tes

)

typ
e

sta
tes

(·10
9)

tra
nsiti

ons (·10
9)

depth
tim

e (hours)

rat
e (sta

tes
/se

c)

gai
n (%

)

firewire link.6 420 Jenkins 19 64 1887952 54.9 94598 134
CHASH 19 67 1281175 42.1 126380

peg solitaire.6 60 Jenkins 2 25 36 12.4 53540 103
CHASH 2 25 36 12.0 55238

driving phils.5 96 Jenkins 6 15 304 4.6 339291 133
CHASH 5 14 304 3.3 450963

lamport nonatomic.5 224 Jenkins 2 8 max. 4.0 105885 121
CHASH 1 7 max. 3.1 128062

telephony.6 64 Jenkins 1 8 max. 2.1 186624 125
CHASH 1 8 max. 1.7 233323

The gain represents the verification rate index of CHASH when compared against
Jenkins’s. Runs for which the maximal depth was reached are indicated by max.
in the depth column.

As can be seen, CHASH improves greatly over Jenkins with an improvement of
up to 34 percent. As can be seen from the times, this improvement can save hours
of verification. Also particularly interesting is that this selection of models have
quite large state vectors. This suggests a correlation between the state vector

248 V.Y. Nguyen and T.C. Ruys

size and the performance gain by CHASH. The BEEM benchmark suite includes
too little models with large state vectors and significant large state spaces in
order to measure such a correlation.

6 Conclusions

There are still several ways to improve our incremental hashing scheme as imple-
mented in Spin. First, we used integer hash functions to improve its uniformity,
and though this works out well, there is room for improvement. We saw that for
some models, the collision rates were relatively high and/or the coverage rates
relatively low. By devising other methods for function T , the mapping of integers
to the ring R, this may be improved. Our experiments with sparse state vectors
and variable reordering for bitstate hashing also help, but more investigation is
required to define an approach that is on average substantially better.

Also, currently untested is the use of incremental hashing with multi-core
model checking (available since Spin 5) and the verification of liveness properties.
This is likely to require additions to the CHASH implementation.

CHASH can be also used orthogonally upon traditional hash function, as a good
second opinion second hash. This hash code can be stored along the state in the
hash table, and used as an additional check before byte-for-byte comparison is
done. This can improve the performance of hstore function, of which profiler
results have shown that improvements in this function is likely to be reflected in
the total running time.

The concept of incremental computation can also be extended to mask-
compression and the state collapser. Having an incremental collapse also en-
ables a nicer implementation of incremental hashing, as it will not be necessary
anymore to add a c hash at every update of the state vector.

Lastly, the BEEM benchmark suite served their purpose for the greater part of
our experiments. It was only lacking on one point, and that is where we wanted
to unfold a correlation between the state vector size and the performance gain.
The problem lies in the lack of models that have both large state spaces and
large state vectors. Adaptations of models in the current suite, or a series of
new models that do have those properties would be welcoming for increasing the
usefulness of the BEEM benchmark suite even further.

Conclusive, we described an incremental hashing that is applicable to any
state vector datastructure, implemented it in Spin and evaluated it using the
BEEM benchmarks. From this evaluation, we observed that Spin’s default set-
tings, namely with compiler optimisations disabled, that incremental hashing is
superior to Hsieh’s SFH and Jenkins’s in all cases. With the most aggressive safe
compiler optimisations enabled, namely -O3, SFH is generally better for 32-bits
exhaustive search, Jenkins’s for all other 32-bits verification modes and incre-
mental hashing is better in all approximate modes and 64-bits in particular.
The average reduction of applying compiler optimisation is nearly a half. We
recommend it to always enable it, and in case when 64-bits machines are used,
combine this with incremental hashing.

Incremental Hashing for Spin 249

The full result set from the BEEM benchmarks and CHASH patch against Spin

5.1.4 can be downloaded from the incremental hashing webpage [17].

References

1. Baase, S., van Gelder, A.: Computer Algorithms, 3rd edn. Addison-Wesley (2000)
2. Cohen, J.D.: Recursive Hashing Functions for N-grams. Transaction On Informa-

tion Systems 15(3), 291–320 (1997)
3. Dillinger, P.C., Manolios, P.: Fast and Accurate Bitstate Verification for SPIN.

In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 57–75. Springer,
Heidelberg (2004)

4. Holzmann, G.J.: On Limits and Possibilities of Automated Protocol Analysis. In:
Proc. 7th Int. Workshop on Protocol Specification, Testing and Verification (PSTV
1987), pp. 137–161. North-Holland, Amsterdam (1987)

5. Holzmann, G.J.: An Analysis of Bitstate Hashing. Formal Methods in System
Design 13, 289–307 (1998)

6. Holzmann, G.J.: The Spin Model Checker – Primer and Reference Manual.
Addison-Wesley, Boston (2004)

7. Jenkins, B.: Hash Functions. Dr. Dobbs Journal 22(9) (September 1997)
8. Karp, R.M., Rabin, M.O.: Efficient Randomized Pattern-Matching Algorithms.

IBM Journal of Research and Development 31(2), 249–260 (1987)
9. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Sorting and Searching,

vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)
10. Kuntz, M., Lampka, K.: Probabilistic Methods in State Space Analysis. In: Baier,

C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 339–383. Springer, Heidelberg (2004)

11. Mehler, T., Edelkamp, S.: Dynamic Incremental Hashing in Program Model Check-
ing. ENTCS 149(2), 51–69 (2006); Proc. of Third Workshop of Model Checking
and Artificial Intelligence (MoChArt 2005)

12. Nguyen, V.Y.: Optimising Techniques for Model Checkers. Master’s thesis, Uni-
versity of Twente, Enschede, The Netherlands (December 2007)

13. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

14. Ruys, T.C., de Brugh, N.H.M.A.: MMC: the Mono Model Checker. ENTCS 190(1),
149–160 (2007); Proc. of Bytecode 2007, Braga, Portugal

15. Wolper, P., Leroy, D.: Reliable Hashing without Collosion Detection. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)

16. BEEM: BEnchmarks for Explicit Model checkers,
http://anna.fi.muni.cz/models/

17. CHASH - Incremental Hashing for SPIN,
http://www-i2.cs.rwth-aachen.de/∼nguyen/incrementalHashing

18. Fowler/Noll/Vo (FNV) Hash, http://isthe.com/chongo/tech/comp/fnv/
19. Hsieh, P.: Hash functions, http://www.azillionmonkeys.com/qed/hash.html
20. Jenkins, B.: A Hash Function for Hash Table Lookup,

http://burtleburtle.net/bob/hash/doobs.html
21. SPIN: on-the-fly, LTL model checking, http://spinroot.com/
22. Wang, T.: Integer Hash Function (2007),

http://www.cris.com/∼Ttwang/tech/inthash.htm

http://anna.fi.muni.cz/models/
http://www-i2.cs.rwth-aachen.de/~nguyen/incrementalHashing
http://isthe.com/chongo/tech/comp/fnv/
http://www.azillionmonkeys.com/qed/hash.html
http://burtleburtle.net/bob/hash/doobs.html
http://spinroot.com/
http://www.cris.com/~Ttwang/tech/inthash.htm

Verifying Compiler Based Refinement of

BluespecTM Specifications Using the SPIN
Model Checker

Gaurav Singh and Sandeep K. Shukla

FERMAT Lab, Deptt of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA 24061, USA
{gasingh,shukla}@vt.edu

Abstract. The underlying model of computation for PROMELA is
based on interacting processes with asynchronous communication, and
hence SPIN has been mainly used as a verification engine for concurrent
software systems. On the other hand, hardware verification has mostly
focused on clock synchronous register-transfer level (RTL) models. As a
result, verification tools such as SMV which are based on synchronous
state machine models have been used more frequently for hardware ver-
ification. However, as levels of abstractions are being raised in hardware
design and as high-level synthesis is being promoted for synthesizing
RTL, hardware design verification problems are changing in nature. In
this paper, we consider a specific high-level hardware description lan-
gauge, namely, Bluespec System Verilog (BSV). The programming model
of BSV is based on concurrent guarded actions, which we also call as Con-
current Action Oriented Specification (CAOS). High-level synthesis from
BSV models has been shown to produce efficient RTL designs. Given the
industry traction of BSV-based high-level synthesis and associated design
flow, we consider the following formal verification problems: (i) Given a
BSV specification S of a hardware design, does it satisfy certain temporal
properties? (ii) Given a BSV specification S , and an implementation R
synthesized from S using a BSV-based synthesis tool, does R conform to
the behaviors specified by S ; that is, is R a refinement of S? (iii) Given a

different implementation R
′

synthesized from S using some other BSV-
based synthesis tool, is R

′
a refinement of R as well? In this paper, we

show how SPIN Model Checker can be used to solve these three prob-
lems related to the verification of BSV-based designs. Using a sample
design, we illustrate how our approach can be used for verifying whether
the designer intent in the BSV specification is accurately matched by its
synthesized hardware implementation.

Keywords: Formal Verification, Hardware Designs, Bluespec System
Verilog (BSV), SPIN Model Checker.

1 Introduction

The emphasis in PROMELA, which is the input specification language of SPIN,
is on the modeling of process synchronization and coordination [1]. For this

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 250–269, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Verifying Compiler Based Refinement of BluespecTM Specifications 251

reason, SPIN is mainly targeted for the verification of concurrent software sys-
tems (described in terms of interacting processes) [2], rather than the verifica-
tion of hardware designs. On the other hand, design of concurrent hardware
systems maps closely to clock-synchronous concurrency model as is primarily
implemented by RTL HDLs (Hardware Description Languages) such as Verilog
and VHDL. For describing such systems, synchronous state machines are bet-
ter suited, making the use of tools like SMV [3] more prevalent for hardware
verification.

However, for better handling of increasing design complexities and efficient
hardware-software co-design, hardware design flows are changing in nature. Be-
havioral specifications of hardware designs are now being written in algorithmic
style (similar to describing a software system) using C-like or other high-level
HDLs at levels of abstraction above register-transfer level (RTL). Such high-level
specifications can then be automatically converted into the corresponding RTL
descriptions [4] using various high-level synthesis tools. Due to this changing
trend, there is a need for new hardware verification techniques that are suitable
for such high-level design flows. In this work, we show how SPIN, which is pri-
marily a software verification tool, can be used for the verification of hardware
designs generated from a particular type of high-level design specifications.

Recently, a new approach to high-level synthesis from Concurrent Action
Oriented Specifications (CAOS) [5,6], as embodied in Bluespec System Verilog
(BSV) [7,8], has been proposed. This is based on the idea that the functional-
ity of any hardware design can be described in terms of high-level concurrent
atomic actions. Note that since BSV semantics is based on guarded atomic ac-
tions, throughout this paper we use the term action instead of rule (as used in
actual BSV syntax) in order to avoid any confusion between the two terms.

In BSV, each action consists of two parts - a guard and a body. Guard is
a condition associated with an action which should evaluate to True for that
action to be enabled. Body of an action consists of a group of operations all
of which are executed atomically when the action is enabled. For example, a
BSV specification of GCD (Greatest Common Divisor) design can be written
in terms of two actions Swap and Diff (Figure 1). g1 and g2 are the guards of
actions Swap and Diff respectively (x and y are the registers). The swap of
the values in the body of action Swap occurs only when g1 evaluates to True.
The assignment y <= y − x in the body of action Diff occurs only when g2

evaluates to True.
Such a high-level BSV specification of a hardware design can be automati-

cally converted into RTL code. High-level synthesis from BSV has been shown

Action Swap : g1 ≡ ((x > y) && (y �= 0))
x <= y; y <= x;

Action Diff : g2 ≡ ((x ≤ y) && (y �= 0))
y <= y − x;

Fig. 1. BSV Specification for GCD design

252 G. Singh and S.K. Shukla

to produce hardware designs which are efficient in terms of area and latency [8].
Techniques for generating power efficient hardware designs from such specifica-
tions have also been proposed in the past [5,6].

However, not much work has been done in the area of automatic formal veri-
fication of hardware designs generated from BSV-based synthesis (which is the
main focus of this paper). This can be attributed to the fact that BSV-based
high-level synthesis has been recently proposed [7] and is relatively new. With
regard to verification, it can be argued that various techniques proposed in the
past to formally verify RTL implementations of hardware designs can also be
used to verify hardware generated from BSV-based synthesis. However, as more
and more functionality is being added to hardware designs, RTL is fast becom-
ing too low level to efficiently handle the complexity of hardware designs, thus
making it imperative to investigate techniques for the verification of high-level
hardware descriptions earlier in the design cycle. High-level specifications do not
contain details irrelevant to design’s behavior, and hence formal verification of
such specifications can aid in faster verification and architectural exploration
leading to increase in the designer’s productivity.

For a given BSV specification S of a design, its RTL implementation schedules
its actions for execution in different clock cycles. A simple hardware schedule ran-
domly selects just one action for execution in each clock cycle. Such a sequential
execution semantics contains all possible hardware behaviors corresponding to
the specification S but is undesirable from latency (total number of clock cycles
elapsed until the execution halts) point of view. Thus, in RTL implementations
generated using S, multiple actions are scheduled for execution in a single clock
cycle provided the set of behaviors shown by any such implementation is a sub-
set of the set of behaviors of specification S. In this sense, checking the schedule
generated by such implementations against the behaviors of the specification S
as well as figuring out relationships among the behaviors shown by two different
implementations of a design are important verification issues.

A hardware design can be represented using a corresponding automaton A
which encodes all the behaviors of the design in terms of its different states and
transitions among those states. The language of automaton A contains all such
behaviors of the design and can be denoted as L(A). Also, essential properties of
the behaviors of the design can be expressed as a set of LTL (Linear Temporal
Logic) formulae EP written in terms of its states and transitions. Using these
notations, important verification problems associated with BSV-based design
flow can be defined as follows -

1. Given a BSV-based specification S, which corresponds to an automaton AS
based on the sequential execution semantics, does AS satisfy all the essential
properties of EP?

2. Given a BSV-based specification S and its implementation R (synthesized
using a BSV-based high-level synthesis tool), which corresponds to an au-
tomaton AR, does AR conform to the behaviors of S; that is, does L(AR) ⊆
L(AS) hold? In other words, is R a refinement of S?

Verifying Compiler Based Refinement of BluespecTM Specifications 253

3. Given automata AR and AR′ for two different implementations R and R
′

of specification S (synthesized using two different BSV-based synthesis tools
differing in their scheduling of actions) respectively, is R

′
a refinement of R;

that is, does L(AR′) ⊆ L(AR) hold?

In order to solve these three problems efficiently, there is a need for per-
forming automatic formal verification of BSV-based designs at a level of ab-
straction above RTL. [9] shows how a BSV-based design can be converted into
corresponding PROMELA model for verification of its essential properties using
SPIN Model Checker. However, [9] does not present a formal translation of the
BSV description of a design into its corresponding PROMELA model. Also, the
remaining two problems of refinement verification of a BSV-based design are not
addressed in [9].

Thus, the two major contributions of this work are: (1) We extend the work in
[9] by formally explaining various algorithms for converting a given action-based
BSV specification of a hardware design and its implementations into correspond-
ing process-based PROMELA models for verification of their essential properties
using SPIN. (2) More importantly, we also present a technique which uses SPIN
for proving strong language-containment results between two different models
of a BSV-based design. Note that SPIN does not directly support proofs of
language-containment between different but related PROMELA models. In this
work, we present a technique which generates an LTL specification in the style
of TLA (Temporal Logic of Actions) [10] for a given PROMELA model. Such an
LTL specification can then be used for proving stronger language-containment
results with respect to other related PROMELA models using SPIN’s LTL Prop-
erty Manager.

Thus, we provide a complete automation flow for solving all three verification
problems related to BSV-based hardware design flow. As confirmed by exper-
iments, our approach can be successfully used for quick and early verification
of hardware designs generated using BSV-based synthesis. Due to space con-
straints, throughout the paper we use a particular small example of a Vending
Machine Controller to illustrate the usefulness of our approach.

This paper is organized as follows. Section 2 presents a formal description
of BSV-based high-level synthesis and various scheduling semantics for BSV
designs. Correctness requirements for BSV designs are explained in Section 3.
Algorithms for generating PROMELA models containing scheduling information
corresponding to a BSV specification and its implementations are presented with
sample models in Section 4. Section 5 presents algorithms for verification of es-
sential properties of a BSV design and performing language-containment proofs
between BSV models, and also discusses some sample experiments. Section 6
concludes the paper with a short discussion. Finally, a short Appendix contain-
ing the references to various algorithms and listings of code is presented at the
end of the paper. Due to space constraints, a more detailed Appendix is given
in [11].

254 G. Singh and S.K. Shukla

2 Background - High-Level Synthesis from BSV

2.1 Hardware Description

Definition 1. A BSV specification S of a hardware design consists of a set
S = {s1, s2, ..., sk} of k state elements of the design and a set A = {a1, a2, ..., an}
of n actions of the design.

Definition 2. Each state element si ∈ S is of the form (ti, ni, ini), where ti,
ni and ini represent the data-type, name and initial value of state element si

respectively. The state elements of a BSV design can be in the form of registers,
FIFOs or memories.

Definition 3. Each action ai ∈ A of specification S consists of two parts - a
guard and a body. For example, an action ai can be of the form,
action mi() if gi(Si

g) { si1 <= bi1(Si
b); si2 <= bi2(Si

b); si3 <= bi3(Si
b); } end;

Here, mi is the name of action ai ∈ A.
Si

g = {s: value of s ∈ S is accessed in the guard of ai ∈ A}.
Si

b = {s: value of s ∈ S is accessed in the body of ai ∈ A}.

Definition 4. gi denotes the guard of action ai. It is a condition associated
with ai which evaluates to either True or False depending on current values of
elements of Si

g. Action ai is said to be enabled if gi evaluates to True.

Definition 5. Body of action ai consists of set of assignment statements of the
form, sij <= bij(Si

b), computing next state values of the design and, in general,
it can be expressed as,

Bi = {(sij , bij(Si
b)) : bij(Si

b) computes the next state value for sij ∈ Si
u

using current values of the elements of Si
b}

where, Si
u = {s: value of s ∈ S is updated in the body of ai ∈ A}.

Thus, Bi denotes the body of action ai ∈ A. Bi consists of a group of op-
erations all of which are executed atomically if ai is enabled and selected for
execution.

As an example, Listing 1.1 shows the BSV specification of a Vending Machine
Controller (VMC). Most of the description of Listing 1.1 is self-explanatory.
For better understanding of BSV semantics and associated verification issues,
we will explain our verification approach with respect to this design. The BSV
specification of Listing 1.1 is composed of three parts-

1. State elements, count and moneyBack (Line 2), that correspond to the
registers of the design.

2. Atomic Actions, doDispenseMoney (Line 4-10) and doDispenseGum (Line
11-14), that perform computations and update the state elements of the
design when their guards (shown with if clause) evaluate to True. Ac-
tion doDispenseMoney controls the dispensing of the money whereas doDis-
penseGum controls the dispensing of gum.

Verifying Compiler Based Refinement of BluespecTM Specifications 255

Listing 1.1. BSV Specification of Vending Machine Controller

1 . module mkVending ()

2 . Reg (Int (7)) count = 0 ; Reg (Bool) moneyBack = False ;
3 . Wire dispenseMoney , gumControl ;

4 . // act ion tha t contro l s d ispens ing of money
5 . ac t i on doDispenseMoney () i f (moneyBack)
6 . i f (count == 0) moneyBack <= False ;
7 . else { l e t newCount = count − 10 ; count <= newCount ;
8 . dispenseMoney . send () ;
9 . i f (newCount == 0) moneyBack <= False ; }
10 . end ;
11 . // act ion tha t contro l s d ispens ing of gum
12 . ac t i on doDispenseGum () i f (! moneyBack && count >= 50)
13 . count <= count − 50 ; gumControl . send () ;
14 . end ;

15 . // input−handling methods
16 . method tenCentIn () i f (! moneyBack) count<=count + 10 ; end ;
17 . method f i f t yCen t I n () i f (! moneyBack) count<=count + 50 ; end ;
18 . method moneyBackButton () i f (! moneyBack) moneyBack<=True ; end ;

19 . // wires connecting money and gum outputs
20 . method dispenseTenCents () return dispenseMoney ; end ;
21 . method dispenseGum () return gumControl ; end ;

22 . endmodule ;

3. Interface methods, tenCentIn, fiftyCentIn, moneyBackButton, dispense-
TenCents and dispenseGum (Lines 15-21), that interact with an external
module such as a testbench or other hardware design. Interface methods
also behave like atomic actions but their execution is controlled by the ex-
ternal module.

Listing 1.1 also contains some combinational wires (Line 3) which are used for
controlling the outputs of VMC. Let Am ⊆ A be the set of actions corresponding
to the interface methods of the BSV design. Thus, for the VMC specification,
we have,

S = {count, moneyBack}.
A = {doDispenseMoney, doDispenseGum, tenCentIn, fiftyCentIn,

moneyBackButton, dispenseT enCents, dispenseGum}.
Am = {tenCentIn, fiftyCentIn, moneyBackButton, dispenseTenCents,

dispenseGum}.

2.2 Synthesis

A given BSV specification S of a hardware design can be synthesized to gen-
erate efficient RTL code, as exemplified by Bluespec Compiler (BSC), which is
a commercial high-level synthesis tool based on BSV semantics [7,8]. Figure 2
shows the translation from such BSV-based description of a design to hardware.
As shown in Figure 2, hardware synthesis from atomic actions can be achieved
by implementing each guard and body as a combinational logic and synthesiz-
ing a control circuitry for appropriate scheduling and data-selection. BSV-based

256 G. Singh and S.K. Shukla

S
T
A
T
E

Scheduler

Selector

Compute guard
for each action

Compute next state
 for each
 action

(Mux’s &
Priority
Encoders)

Read

Update

Ф 1 Ф 2 Ф n

π 2

δ 1

π 1

δ 2

δ n

π n

. . .

.

.

.

.

Fig. 2. Synthesis from BSV

synthesis is behaviorally higher in abstraction than RTL-synthesis because it
supports automatic handling of concurrency and synchronization issues (such as
due to updates on the shared state elements) via atomic actions.

2.3 Scheduling of Actions

Let d(si) denote the domain of state element si ∈ S of the design. For hardware
designs, usually d(si) is the Boolean domain but for BSV specification, which is
at a higher level of abstraction, domains such as 32-bit integer, n-bit bit-vector,
etc. can be used. For example, if si is an 8-bit register, then d(si) = {0, 1}8,
which is a set of all possible 8-bit strings of 0s and 1s.

Lets consider a vector ŝ =< s1, s2, ..., sk > of the state elements of the design.
Note that ŝ contains same elements as in set S. In this section, instead of S, we
will use ŝ in order to appropriately denote the state of the design for defining
its behaviors. Let σc(ŝ) =< d1, d2, ..., dk > ∈ Πk

i=1d(si) denote the state of
the design at the end of clock cycle c. Thus, σ is the function which maps the
state elements of the design to their respective values at some point during the
design execution. A behavior of the design can be defined as a sequence of states
(possibly infinite) given as, β = (σ0(ŝ), σ1(ŝ), σ2(ŝ), ..., σc(ŝ), ...) such that
σc+1(ŝ) results from executing actions in Ac ⊆ A in clock cycle (c + 1) when the
design is in state σc(ŝ).

Refinement of Behaviors. Consider two behaviors β and β
′

of the design.
Let Cβ and Cβ′ denote the set of clock cycles of β and β

′
respectively such that

Cβ ⊂ N and Cβ′ ⊂ N , where N denotes the set of natural numbers. β
′

is said
to be a refinement of β if ∃ r : Cβ → Cβ′ , where r is an injective and monotonic

function such that ∀ c ∈ Cβ , σβ
c (ŝ) = σβ

′

r(c)(ŝ).

2.3.1 AOA Semantics
During the execution of the design generated using BSV-based synthesis, multi-
ple actions can get enabled in a clock cycle c. In a simple hardware schedule, one
such enabled action can be randomly chosen for execution in c, thus proceeding

Verifying Compiler Based Refinement of BluespecTM Specifications 257

the execution of the design in a sequential manner. The execution of the design
halts when none of its actions are enabled in some clock cycle. We call such
a sequential execution semantics where only one action is randomly chosen for
execution in each clock cycle as Any One Action (AOA) Semantics.

Behavior in AOA Semantics. Behavior of the design in AOA Semantics can
be given as, βAOA = (σ0(ŝ), σ1(ŝ), σ2(ŝ), ..., σc(ŝ), ...) such that σc+1(ŝ) results
from executing actions in Ac ⊆ A, |Ac| = 1, in clock cycle (c + 1) when the
design is in state σc(ŝ).

2.3.2 Concurrent Semantics
In spite of being behaviorally correct, the sequential execution of just one action
in each clock cycle as per AOA Semantics is undesirable from latency point
of view, especially for designs containing large number of actions. Thus, in a
hardware implementation R, synthesized from specification S, multiple enabled
set of actions Ac ⊆ A, |Ac| ≥ 1, can be allowed to execute concurrently in a clock
cycle c provided the atomicity of actions in Ac is maintained. This means that, in
implementation R, behavior of the design resulting from concurrent execution of
actions in Ac should be equivalent to at least one sequential behavior of actions
in Ac based on AOA Semantics. We call such a scheduling semantics where
multiple actions are allowed to execute concurrently in a single hardware clock
cycle as Concurrent Semantics.

Conflicting Actions. In hardware generated from BSV-based synthesis, main-
taining such atomicity among various actions belonging to Ac may lead to com-
plicated combinational circuit. To avoid this, a notion of conflict is introduced.
An example of a conflict is two actions updating the same hardware register;
that is, two actions ai, aj ∈ A can be said to be conflicting with each other if
Si

u ∩ Sj
u �= φ. Other kinds of conflicts can also exist within two actions of the

design, thus forbidding the concurrent execution of those actions. In general,
two actions are considered to be conflicting with each other if executing their
operations in the same clock cycle is undesirable for pragmatic reasons (like long
critical paths, write-write conflicts, complicated hardware analysis, etc.). In the
synthesized circuit, such restrictions are enforced using small overhead logic.

For example, for VMC, actions doDispenseGum, tenCentIn and fiftyCentIn
conflict with each other since they all update register count. In case two or more
conflicting actions are enabled in the same clock cycle, a notion of priority
is used to decide which of those actions should be executed in that cycle. A
higher priority action is always chosen for execution over all the other lower
priority conflicting actions. Let C(i, j) represent a function which returns True
if two actions ai, aj ∈ A conflict with each other, and False otherwise. Then,
Ci = { aj : C(i, j) = True; aj ∈ A has higher priority than ai ∈ A } denotes the
set of actions conflicting with ai which are preferred for execution over ai.

Sequential Ordering. In order to generate appropriate scheduling and control
logic that maintains the atomicity of various actions of a design executing within

258 G. Singh and S.K. Shukla

the same clock cycle, BSV-based synthesis involves constructing (at compile
time) a single sequential ordering Sorder of all actions belonging to A of specifi-
cation S. Lets define a relation <s among any two actions ai, aj ∈ A, C(i, j) =
False, such that ai <s aj holds if concurrent execution of ai and aj in a single
clock cycle is equivalent to executing ai followed by aj in two consecutive clock
cycles each executing just one action. For VMC, actions doDispenseGum and
moneyBackButton can be executed concurrently since their concurrent execu-
tion is equivalent to the following sequential ordering- doDispenseGum, money-
BackButton. This can be denoted as: doDispenseGum <s moneyBackButton.

To construct Sorder, transitivity property of relation <s is used and cycles are
broken appropriately during the synthesis process. For VMC, one such possible
ordering Sorder of actions is given as - tenCentIn, fiftyCentIn, doDispenseMoney,
doDispenseGum, moneyBackButton. Note that for simplification, we ignore ac-
tions dispenseTenCents and dispenseGum in this ordering since these actions
neither perform any computations nor change the state of the design.

Behavior in Concurrent Semantics. For an implementation R, which is
synthesized from specification S based on Concurrent Semantics, a behavior of
the design can be defined as, βR = (σ0(ŝ), σ1(ŝ), σ2(ŝ),, σc(ŝ), ...), such
that -

(1) σc+1(ŝ) results from executing actions belonging to Ac ⊆ A in clock cycle
(c + 1) when the design is in state σc(ŝ).

(2) If |Ac| > 1, then C(i, j) = False ∀ai, aj ∈ Ac, i �= j; that is, Ac denotes a
set of non-conflicting actions.

(3) βR corresponds to an equivalent behavior βR
seq generated using the se-

quential ordering Sorder of R, with just one action being executed in each clock
cycle in βR

seq.

3 Correctness Requirements for BSV Designs

3.1 AOA Semantics

Depending on what actions are selected for execution in different clock cycles,
specification S of the design can consist of multiple behaviors of the form βAOA

based on AOA Semantics. Let AS be the automaton encoding all such possi-
ble behaviors of specification S. The language of automaton AS is denoted by
L(AS), and is said to contain all behaviors of specification S. Let EP repre-
sent the set of all essential properties of the design expressed as LTL (Linear
Temporal Logic) formulae.

Correctness Requirement 1 (CR-1). The correctness constraint mandates
that for S to be a valid specification of the hardware design, each behavior βAOA

of S should satisfy all properties in EP ; that is, ∀ βAOA ∈ L(AS), ∀ p ∈ EP ,
βAOA should satisfy p.

Verifying Compiler Based Refinement of BluespecTM Specifications 259

3.2 Concurrent Semantics

For an implementation R generated from specification S based on Concurrent
Semantics, any behavior of the form βR shown by R corresponds to an equivalent
behavior βR

seq generated using Sorder. Let AR be an automaton encoding all
possible behaviors of the form βR

seq shown by R.

Correctness Requirement 2 (CR-2). The correctness constraint mandates
that for R to be a valid implementation of S, R should be a refinement of S. In
other words, language-containment relation L(AR) ⊆ L(AS) should hold.

3.2.1 Maximal Concurrent Schedule (MCS)
For latency minimization, maximal set of actions of the design can be chosen
for execution in each hardware clock cycle. Such a schedule of a design can
be termed as a Maximal Concurrent Schedule (MCS) and an implementation
RMCS of the design generated based on this schedule contains multiple different
behaviors of the form βR such that Ac = AM

c , where AM
c ⊆ A is a maximal set

of non-conflicting actions scheduled for execution in clock cycle c. As mentioned
earlier, each behavior βR corresponds to an equivalent behavior βR

seq generated
using the sequential ordering Sorder of RMCS .

Let AMCS
R be the automaton encoding all such possible behaviors L(AMCS

R)
of a hardware design under the maximal concurrent schedule. The correctness
constraint requires that the language-containment relation L(AMCS

R) ⊆ L(AS)
should hold; that is, RMCS should be a refinement of specification S of the de-
sign. BSC performs automatic concurrent scheduling of hardware designs, and
generates RTL code adhering to one such maximal concurrent refinement which
satisfies L(AMCS

R) ⊆ L(AS). (BSV is the CAOS-style input specification lan-
guage of BSC.)

3.2.2 Alternative Concurrent Schedule (ACS)
As mentioned earlier, BSC schedules maximal set of actions in each clock cy-
cle for latency minimization. However, concurrent execution of large number
of actions for improving the latency of a hardware design is usually associated
with a corresponding degradation of other attributes of the design, such as its
area, peak-power, etc. This might not be desirable for a design having conflicting
constraints on its latency and other attributes.

In such cases, instead of executing maximal set of actions AM
c in clock cycle

c, an alternative implementation RACS of the design needs to be derived which
selects only a set of actions Ac ⊆ A for execution in c such that all the constraints
of the design are satisfied. Such a schedule of a design can be termed as a
Alternative Concurrent Schedule (ACS). Let AACS

R be the automaton encoding
all possible behaviors L(AACS

R) of a hardware design corresponding to RACS .
Again, the correctness constraint mandates that L(AACS

R) ⊆ L(AS); that is,
any alternative implementation RACS of a design based on such a schedule is
required to be a refinement of specification S of the design.

260 G. Singh and S.K. Shukla

3.3 Comparing Two Implementations

Two different implementations of a BSV-based design differ in their scheduling
of the actions of the design. In general, an implementation R of a BSV spec-
ification S may either enhance or restrict its set of behaviors as compared to
some other implementation R

′
. However, as mentioned earlier, all behaviors of

R and R
′

should conform to the set of behaviors L(AS) of the specification S,
thus satisfying L(AR) ⊆ L(AS) and L(AR′) ⊆ L(AS).

L(A)

L(A)

(A) (B)

R

S

L(A)R’

L(A)S

L(A)R’

L(A)R

Fig. 3. Language-Containment Relationships

Furthermore, depending on the design requirements, in some cases it might
also be desirable to show that R

′
is a refinement of R; that is, L(AR′) ⊆ L(AR)

holds as shown in Figure 3(A). For other cases, relation shown in Figure 3(B)
may hold.
Correctness Requirement 3 (CR-3). For two different valid implementations
R and R

′
of specification S, R

′
is a refinement of R iff L(AR′) ⊆ L(AR).

4 Converting BSV Model to PROMELA Model

Atomicity as well as priority of operations are important concepts in BSV which
are also well supported in PROMELA. Moreover, as demonstrated by our ap-
proach, different hardware scheduling semantics can also be efficiently modeled
in PROMELA using various constructs of the language [1]. Hence, PROMELA
can be used for modeling the desired semantics of BSV designs, thus providing
a path for verification of such designs using SPIN at a level of abstraction above
RTL.

4.1 Generating PROMELA Variables and Processes

PROMELAmodelM of a system consists of a set V of variables and a set P of pro-
cesses (P includes the ‘init’process)used todescribe the system.Given aBSV spec-
ificationS of a hardware design, we presentAlgorithm GenPROMELA (Figure 4)
to generate PROMELA model M corresponding to S. Algorithms GenV ARS,
GenPROCS andGenProcCycleusedbyAlgorithmGenPROMELAare explained
in short below. The parameters of various algorithms are described in Appendix
with detailed algorithms presented in [11] due to space constraints.

Verifying Compiler Based Refinement of BluespecTM Specifications 261

ALGORITHM: GenPROMELA. INPUT: BSV Specification S .
OUTPUT: PROMELA model M.

1. Initialize V = φ, P = φ. (Note: V and P are sets of variables and processes of
PROMELA model M respectively.)

2. Using Algorithm GenV ARS (Appendix - Figure 7), generate the set of variables
V for M using S . Algorithm GenV ARS generates variables corresponding to the
state elements of the BSV design as well as other variables needed for modeling
the concurrent hardware behavior of the design.

3. Using Algorithm GenPROCS (Appendix - Figure 8), generate the set of processes
P for M using S and V . For each action of S , Algorithm GenPROCS generates
a corresponding process in M modeling the behavior of the action.

4. In order to model the hardware behavior in PROMELA, use Algorithm
GenProcCycle (Appendix - Figure 9) to generate a process pr using S , V and
P . Add pr to P . The execution of this process is used to denote the start of a
hardware cycle, thus modeling the synchronous execution of a hardware design.

5. Using V and P , generate PROMELA ‘init’ process which initializes all variables
in V and instantiates all processes in P . Add ‘init’ to P

6. Output PROMELA model M whose sets of variables and processes are denoted
by V and P respectively.

Fig. 4. Algorithm for generating PROMELA model from BSV specification

4.2 Adding Scheduling Information to PROMELA Model

Algorithm GenPROMELA (Figure 4) generates sets of variables and processes
for PROMELA model M which corresponds to specification S. For modeling
a particular hardware execution semantics in PROMELA, a new model M∫
needs to be generated by enhancing model M with the corresponding hardware
scheduling information.

AOA Semantics. In order to model a schedule based on AOA Semantics
in PROMELA, we present Algorithm AddSeqSched (Appendix - Figure 10).
The algorithm enhances PROMELA model M generated by Algorithm Gen-
PROMELA such that during the execution of the model, ‘start of cycle’ process
(whose execution denotes the start of a new hardware clock cycle) is executed af-
ter every execution of any other process of the model. The generated model M∫
accurately models the behaviors L(AS) of specification S as per AOA Semantics.

Concurrent Semantics. During the BSV-based synthesis, a sequential order-
ing Sorder of the actions of the design is generated to which any concurrent
execution of actions will correspond. Given such an ordering Sorder for an im-
plementation R, we present an Algorithm AddConcSched (Appendix - Figure
11), which generates model M∫ by enhancing PROMELA model M (generated
by Algorithm GenPROMELA shown in Figure 4) with the scheduling informa-
tion of implementation R. Note that behaviors of model M∫ correspond to all
possible behaviors L(AR) of R.

262 G. Singh and S.K. Shukla

Algorithm AddConcSched is generic in the sense that it can model any partic-
ular schedule (MCS as well as ACS) of a design based on Concurrent Semantics.
For this, it takes ordering Sorder corresponding to R, and maximum number
of actions allowed to execute concurrently in R as inputs. In order to model
the hardware behavior, after every execution of ‘start of cycle’ process, Algo-
rithm AddConcSched checks each process for execution based on Sorder until
maximum number of processes have executed.

4.3 Sample PROMELA Models

Detailed Appendix of [11] shows Listings 1.2 and 1.3 which are generated
PROMELA models corresponding to the implementations of VMC specification
of Listing 1.1. Listings 1.2 and 1.3 show two PROMELA models - one corre-
sponding to the implementation RMCS which executes maximal set of actions in
a single clock cycle, and another corresponding to implementation RACS based
on an alternative schedule which executes only one action as per a sequential
ordering.

These models are generated using Algorithm GenPROMELA (Figure 4) and
Algorithm AddConcSched (Appendix - Figure 11). Both the PROMELA models
are shown in Listings 1.2 and 1.3 (Appendix of [11]) using appropriate mark-
ings for implementation-specific lines of code. These models consist of multiple
processes including the PROMELA ‘init’ process and five other processes corre-
sponding to different actions of the VMC specification. Not all processes could
fit in Listing 1.2 so the remaining ones are shown in Listing 1.3. The main char-
acteristics of such a conversion process that translates a given BSV model into
corresponding PROMELA model are -

1. Each action of a BSV design with its corresponding guard and operations is
modeled as a process in PROMELA. Moreover, as shown in Listing 1.2 (Ap-
pendix of [11]), set of variablesV (corresponding to the state elements ofVMC)
are declared in the beginning of the PROMELA code. Variables count old,
action fired and one action fired are used for verification purposes.
In order to model the atomicity of operations of an action, PROMELA
construct ‘atomic’ is used [1]. This avoids the interleaving of operations of
various processes, which is consistent with BSV semantics and aids in faster
verification. Also, ‘do’, which is a repetition construct in PROMELA [1], is
used for forwarding the execution of processes as in the real hardware (cycle
by cycle).

2. In order to model the hardware behavior, an extra process named ‘start of
cycle’ is generated as shown in Listing 1.3 (Appendix of [11]). This process
denotes the start of a hardware clock cycle and reads inputs, if any, from
environment external to the design (like a testbench or another hardware
design). For VMC, such external inputs are read in variables tenCentIn,
fiftyCentIn and moneyBackButton. These variables are used to signal if
processes IFC tenCentIn, IFC fiftyCentIn and IFC moneyBackButton which
correspond to interface methods of the VMC specification are executed
or not.

Verifying Compiler Based Refinement of BluespecTM Specifications 263

3. For processes which do not correspond to interface methods, the execution
is dependent on a condition which contains logic related to the guard of the
corresponding action of the design, as well as logic based on the conflicts with
other higher priority actions. If this condition is True, then corresponding
process is executed, otherwise next process in the ordering is considered
for execution (as controlled by variable action and PROMELA’s ‘unless’
construct in Listings 1.2 and 1.3).

4. For implementations based on Concurrent Semantics, variable named action
is used to enforce a particular sequential ordering Sorder of execution among
the processes of the generated PROMELA model such that its behavior
maps exactly to the concurrent hardware behavior. This is implemented
using Algorithm AddConcSched (Appendix - Figure 11).

Maximal Concurrent Schedule (MCS) - As shown in Listings 1.2 and 1.3
(Appendix of [11]), in order to model an implementation based on MCS, each
execution of a process in PROMELA code assigns a new value to variable action.
The new value is assigned such that in the next step, next process in Sorder is
checked for execution. Such assignments are shown with lines of code marked
as “FOR MAXIMAL CONCURRENT SCHEDULE” in Listing 1.2. In such a
model, all the processes of the model are checked for execution in every clock
cycle.

Alternative Concurrent Schedule (ACS) - For VMC, an implementation
corresponding to MCS will execute actions doDispenseGum and moneyBackBut-
ton concurrently whenever count becomes greater than 50 cents, moneyBack is
False and external environment signals the execution of action moneyBackBut-
ton. However, if the peak-power constraint of the design allows only one action
to execute in a single clock cycle, then an alternative implementation of the
VMC specification adhering to the peak-power constraint needs to be gener-
ated. Listings 1.2 and 1.3 (Appendix of [11]) also show generated PROMELA
model corresponding to such an implementation of VMC. For that implemen-
tation, appropriate assignments to variable action are shown with lines of code
marked as “FOR ALTERNATIVE CONC SCHEDULE”. The value of variable
action is updated to six in each process, thus signifying the end of a hardware
clock cycle after one process executes.

Note. Enforcing a particular sequential ordering (as done in Algorithm AddConc
Sched) suppresses non-determinism in the behavior of the PROMELA model
but is needed to model the deterministic hardware behavior. However, note that
no such sequential ordering is enforced in the PROMELA model generated by
Algorithm AddSeqSched (Appendix - Figure 10). In that model, execution of a
single process marks the end of a hardware clock cycle, and in the next cycle,
a new process is non-deterministically (and not based on a sequential ordering)
executed. Thus, such a model will contain all possible behaviors L(AS) of a BSV
specification S.

264 G. Singh and S.K. Shukla

5 Formal Verification Using SPIN

5.1 Verifying Correctness Requirement 1 (CR-1)

Proposition 1. Given a set EP of essential properties, a BSV specification S
satisfies property p ∈ EP iff its corresponding PROMELA model M∫ satisfies
property pm, where pm is equivalent to p and is expressed with respect to M∫ .

Based on Proposition 1, a BSV specification S can be verified for Correctness Re-
quirement 1 (CR-1) mentioned in Section 3 using Algorithm V erfCR1 (Figure 5).

ALGORITHM: V erfCR1.
INPUT: 1. BSV specification S , 2. Set EP of Essential Properties.
OUTPUT: Verify if S meets Correctness Requirement 1 (CR-1)?

1. Using Algorithm GenPROMELA (Figure 4) and Algorithm AddSeqSched (Ap-
pendix - Figure 10), generate a PROMELA model M∫ based on AOA Semantics
using S .

2. Initialize EPm = φ.
3. For each property p ∈ EP

(a) Convert p into pm such that pm is an LTL formula expressed with respect to
M∫ (using variable set V of M∫).

(b) Add pm to EPm.
4. ∀ pm ∈ EPm, perform verification of M∫ against pm using SPIN.
5. If verification is successful ∀ pm ∈ EPm, then S meets Correctness Requirement 1.

Fig. 5. Algorithm for Verifying Correctness Requirement 1

5.2 Verifying Correctness Requirement 2 (CR-2)

Proposition 2. Given a BSV specification S and its implementation R, R is
a refinement of S iff MR

∫ is a refinement of MS
∫ , where MR

∫ and MS
∫ are

corresponding PROMELA models of R and S respectively.

Based on Proposition 2, an implementation R of a BSV specification S can be
verified for Correctness Requirement 2 (Section 3) using Algorithm VerfLang-
Cont (Figure 6). Algorithm V erfLangCont generates PROMELA model MR

∫
for implementation R. It also generates an LTL specification LTLS encoding all
the behaviors L(AS) of specification S (based on AOA Semantics) with respect
to the state in MR

∫ . Such LTL specifications are generated in the style of TLA
[10] (as an example, see Listing 1.4 which is shown in Appendix of [11] and is
explained later in this paper.) because BSV specifications are written in terms
of actions and not explicitly in terms of the state of the design. However, note
that Algorithm V erfLangCont only encodes the safety properties and not the
liveness assumptions in the generated LTL specification LTLS. This is because
we are interested in showing that safety properties encoded in LTLS also hold
in implementation R. In other words, R is a refinement of S.

Verifying Compiler Based Refinement of BluespecTM Specifications 265

ALGORITHM: V erfLangCont.
INPUT: 1. BSV specification S , 2. Implementation R of S .
OUTPUT: Verify if L(AR) ⊆ L(AS) holds or not?

1. Using Algorithm GenPROMELA (Figure 4), generate PROMELA model MR

for implementation R. Let V and P denote the set of variables and processes
corresponding to MR respectively.

2. Initialize LTLS = True.
3. For each process pr ∈ P , such that pr ≡ (m, B, g) corresponds to an action a ∈ A,

(a) Generate a set NSV of all next state values in MR that are possible according
to the behaviors of S (AOA Semantics) when g becomes True in MR. (Note:
Only next state values in MR corresponding to the execution of an action in
S needs to be captured. For this, in order to signify the execution of a process
in MR, value of variable action fired in V can be checked to be True.)

(b) Generate an LTL property expression LTLp of the form LTLp ≡ ([] (g − >
X(‖ NSV))), where (‖ NSV) is True only when at least one of the elements
of NSV is True, and False otherwise.

(c) LTLS = LTLS && LTLp.
4. Optimize LTLS to reduce the number of different LTL expressions while retaining

all its behaviors. (Note: At this stage, LTLS contains all possible behaviors of S
with respect to the state in MR.)

5. Using Algorithm AddConcSched (Appendix - Figure 11), generate PROMELA
model MR

∫ using S , MR and R.
6. Using SPIN’s LTL Property Manager, perform verification of MR

∫ against LTLS.
If verification is successful, then L(AR) ⊆ L(AS) holds, otherwise not.

Fig. 6. Algorithm for Proof of Language Containment

Using SPIN’s LTL Property Manager, model MR
∫ is then verified against

LTLS for ensuring the language-containment relation L(AR) ⊆ L(AS). This
allows using SPIN for proving strong language-containment relationships for
BSV designs.

5.3 Verifying Correctness Requirement 3 (CR-3)

Proposition 3. Given two different implementations R and R
′
of a BSV spec-

ification S, R
′
is a refinement of R iff MR′

∫ is a refinement of MR
∫ , where MR′

∫
and MR

∫ are corresponding PROMELA models of R
′
and R respectively.

Based on Proposition 3, Algorithm V erfLangCont (Figure 6) can also be used
to verify Correctness Requirement 3 (Section 3). For this, all the steps of the
Algorithm V erfLangCont remain same except that the inputs to the algorithm
in this case will be implementations R and R

′
(instead of specification S and R

as shown in Figure 6). Consequently, the algorithm will verify PROMELA model
of implementation R

′
against the LTL specification encoding all the behaviors

of implementation R with respect to state in R
′
.

266 G. Singh and S.K. Shukla

5.4 Sample Experiments

I. We used Algorithm V erfLangCont (Figure 6) to successfully verify the
language-containment relations L(AMCS

R) ⊆ L(AS) and L(AACS
R) ⊆ L(AS)

among VMC specification of Listing 1.1 and its implementations RMCS and
RACS , shown in Listings 1.2 and 1.3 (Appendix of [11]). Listing 1.4 (Appendix
of [11]) shows the LTL specification LTLS generated by Algorithm V erfLang
Cont, which corresponds to all behaviors L(AS) of the VMC specification. In
Listing 1.4, variables count old, action fired and one action fired are used for
expressing LTLS with respect to the state in the PROMELA models of Listings
1.2 and 1.3 as follows -

1. count old stores the old value of count at the start of every process and is
used in LTLS to compare any updates on the value of count (during the
execution of the process) with the old value.

2. action fired and one action fired are used in LTLS to check the state
of the PROMELA model at points (just after a process has executed its
atomic block) which map to the state changes during the execution of the
BSV design.

II. We also used Algorithm V erfLangCont to verify if L(AMCS
R) ⊆ L(AACS

R)
holds for VMC.

Result. Verification done by SPIN proved that L(AMCS
R) ⊆ L(AACS

R) does
not hold for VMC, and pointed out a behavior shown by RMCS which is not
shown by RACS . This behavior corresponds to the case when count ≥ 100 holds,
moneyBack is False and external environment signals the execution of action
moneyBackButton (assuming actions tenCentIn and fiftyCentIn are not signalled
to execute). In such a state, the behaviors of the two implementations RMCS

and RACS differ as follows-

1. RMCS (to which the generated PROMELA model corresponds) executes
actions doDispenseGum as well as moneyBackButton in the first clock cycle.
This is followed by the execution of doDispenseMoney in the next clock cycle.

2. RACS (to which the generated LTL specification corresponds) only executes
doDispenseGum in the first clock cycle. This is because RACS allows only one
action to execute in a single clock cycle, and based on the sequential ordering
it just executes action doDispenseGum, thus dispensing gum and reducing
count by 50 cents. In the next clock cycle, count ≥ 50 holds and doDis-
penseGum will be again selected for execution (assuming actions tenCentIn
and fiftyCentIn are not signalled to execute). Action moneyBackButton is
not executed in such a behavior.

Thus, as successfully highlighted by SPIN, L(AMCS
R) ⊆ L(AACS

R) does not hold
for VMC.

III. Furthermore, we used SPIN to prove that L(AACS
R) ⊆ L(AMCS

R) also does
not hold for VMC. This implies that both implementations RMCS and RACS of
VMC conform to its specification but one is not a refinement of other. For some
BSV designs, such relationships are acceptable because Correctness Requirement

Verifying Compiler Based Refinement of BluespecTM Specifications 267

3 (CR-3) (Section 3) needs to be satisfied only if required based on the design
requirements. For VMC, RACS and RACS contain behaviors conforming to the
specification and both implementations are acceptable.

These experiments demonstrate that the language-containment based veri-
fication approach of Algorithm V erfLangCont (Figure 6) can be successfully
used to compare behaviors of different implementations of BSV designs.

6 Summary

Verification of hardware designs at a level of abstraction above RTL aids in faster
and efficient verification early in the design cycle. BSV-based high-level synthesis
converts a BSV specification of a hardware design into its corresponding RTL
code. However, verification of BSV designs at levels of abstraction above RTL
has not been looked at until now. In this paper, we present a verification ap-
proach that provides such a verification path for BSV designs. We propose the
conversion of BSV-based hardware designs into corresponding PROMELA mod-
els containing implementation-specific scheduling information. Such PROMELA
models can then be verified using SPIN for their essential properties. Moreover,
for stronger language-containment proofs, we propose a technique that uses SPIN
to verify if a particular implementation of the BSV design is a refinement of its
specification or some other implementation. We successfully used our verifica-
tion techniques to check different BSV designs for correctness and language-
containment based proofs. Note that for BSV designs consisting of large number
of actions, the proposed SPIN-based verification techniques in this paper might
not scale well. However, a targeted model checker based on the presented veri-
fication techniques will scale better. In this paper, our intent is to conceptually
show how a model checker like SPIN can be used to verify BSV-based hardware
designs early in the design cycle.

References

1. Holzmann, G.J.: The SPIN Model Checker. Addison Wesley, Reading (2004)

2. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5), 279–295
(1997)

3. SMV, http://www-cad.eecs.berkeley.edu/∼kenmcmil/
4. Raghunathan, A., Jha, N.K., Dey, S.: High-Level Power Analysis And Optimiza-

tion. Kluwer Academic Publishers, Dordrecht (1998)

5. Singh, G., Shukla, S.K.: Low-Power Hardware Synthesis from TRS-based Specifi-
cations. In: International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2006) (2006)

6. Singh, G., Schwartz, J.B., Ahuja, S., Shukla, S.K.: Techniques for Power-aware
Hardware Synthesis from Concurrent Action Oriented Specifications. Journal of
Low Power Electronics (JOLPE) 3(2), 156–166 (2007)

7. Hoe, J.C.: Arvind: Hardware Synthesis from Term Rewriting Systems. In: Proceed-
ing of VLSI 1999, Lisbon, Portugal (December 1999)

http://www-cad.eecs.berkeley.edu/~kenmcmil/

268 G. Singh and S.K. Shukla

8. Arvind, N.R., Rosenband, D., Dave, N.: High-level synthesis: An Essential Ingredi-
ent for Designing Complex ASICs. In: Proceedings of the International Conference
on Computer Aided Design (ICCAD 2004), November 2004, pp. 775–782 (2004)

9. Singh, G., Shukla, S.K.: Model Checking Bluespec Specified Hardware Designs. In:
Microprocessor Test and Verification (MTV 2007) (2007)

10. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16(3), 872–923 (1994)

11. Singh, G., Shukla, S.K.: Verifying Compiler Based Refinement of Bluespec Speci-
fications using the SPIN Model Checker. Technical report 2008-03, Virginia Tech,
FERMAT Lab, Blacksburg, VA (April 2008),
http://fermat.ece.vt.edu/Publications/pubs/techrep/techrep0803.pdf

Appendix - Algorithms and Code Listings

Listings 1.2, 1.3 and 1.4 are available in Appendix of [11].

ALGORITHM: GenV ARS. IN: BSV Specification S . OUT: Set of variables V .

For details of algorithm, see Figure 7 in Appendix of [11].

Fig. 7. Algorithm for generating set of variables of PROMELA Model

ALGORITHM: GenPROCS. INPUT: 1.BSV Specification S , 2.Set of Variables V .
OUTPUT: Set of processes P .

For details of algorithm, see Figure 8 in Appendix of [11].

Fig. 8. Algorithm for generating set of processes of PROMELA Model

ALGORITHM: GenProcCycle.
INPUT: 1. BSV Specification S , 2. Set of Variables V , 3. Set of processes P .
OUTPUT: PROMELA process start of cycle.

For details of algorithm, see Figure 9 in Appendix of [11].

Fig. 9. Algorithm for generating process denoting start of hardware cycle in
PROMELA Model

http://fermat.ece.vt.edu/Publications/pubs/techrep/techrep0803.pdf

Verifying Compiler Based Refinement of BluespecTM Specifications 269

ALGORITHM: AddSeqSched. INPUT: 1. BSV Specification S , 2. PROMELA
Model M without scheduling information.
OUTPUT: PROMELA Model M∫ executing processes based on AOA Semantics.

For details of algorithm, see Figure 10 in Appendix of [11].

Fig. 10. Algorithm for modeling AOA Execution Semantics in PROMELA Model

ALGORITHM: AddConcSched.
INPUT: 1. BSV Specification S , 2. PROMELA Model M without scheduling infor-
mation, 3. Sequential Ordering Sorder of an implementation R, 4. Maximum number
of actions max allowed to execute concurrently in R.
OUTPUT: PROMELA Model M∫ based on scheduling information of R.

For details of algorithm, see Figure 11 in Appendix of [11].

Fig. 11. Algorithm for modeling Concurrent Execution Semantics in PROMELA Model

Symbolic Context-Bounded Analysis of

Multithreaded Java Programs�

Dejvuth Suwimonteerabuth, Javier Esparza, and Stefan Schwoon

Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany

Abstract. The reachability problem is undecidable for programs with
both recursive procedures and multiple threads with shared memory. Ap-
proaches to this problem have been the focus of much recent research.
One of these is to use context-bounded reachability, i.e. to consider only
those runs in which the active thread changes at most k times, where k
is fixed. However, to the best of our knowledge, context-bounded reacha-
bility has not been implemented in any tool so far, primarily because its
worst-case runtime is prohibitively high, i.e. O(nk), where n is the size of
the shared memory. Moreover, existing algorithms for context-bounded
reachability do not admit a meaningful symbolic implementation (e.g.,
using BDDs) to reduce the run-time in practice. In this paper, we propose
an improvement that overcomes this problem. We have implemented our
approach in the tool jMoped and report on experiments.

1 Introduction

The analysis of procedural multithreaded programs has been intensively studied
in the last years. If both recursion and multithreading are allowed, checking as-
sertions such as reachability of program points is undecidable, even for programs
whose variables are all of boolean type (see for instance [1]).

In order to cope with this undecidability result, three approaches have been
proposed. First, the reachability of program points (and other, more general
problems) has been studied and shown to be decidable for several special cases,
like no communication between threads (but unrestricted thread creation) [2];
communication through nested locks [3,4]; communication following a transac-
tional policy [5]; or communication following a task-based policy [6]. In a second
approach, techniques have been developed that compute an overapproximation
of the set of reachable states. In [7,8] it is shown that so called commutative
abstractions of the set of reachable states can be effectively computed, while
[9,10] describes a CEGAR loop for another class of abstractions; this loop has
been implemented in the MAGIC and Spade systems.

This paper lines with the third approach to the problem, namely the com-
putation of underapproximations of the set of reachable states. In [11], Qadeer
and Rehof proposed the first nontrivial technique, working for possibly recursive

� Partially supported by the DFG project Algorithms for Software Model Checking.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 270–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 271

multithreaded programs communicating through global variables. They intro-
duce the notion of context switch (transfer of control from one thread to another)
and show how to compute, for a fixed k, the set of states reachable by compu-
tations with at most k context switches. The algorithm of [11] was extended in
[12] to a more general programming model allowing for both global and local
variables. In [13] it was also adapted to the analysis of concurrent queue systems.

Given a computation with k context switches, let us define its trace as the
sequence of valuations of the global variables at which the switches take place.
A shortcoming of the algorithms of [11,12] is that they require to explicitly
examine each trace one by one. If the global variables have n possible valuations,
the number of traces is O(nk), which seriously limits the applicability of the
approach. Recently, Lal et al. have proposed a new algorithm which avoids this
problem at the expense of, loosely speaking, computing the reachability relation
for a thread instead of only the set of reachable states [14]. To the best of our
knowledge, none of the techniques for computing underapproximations presented
in [11,12,14] has been implemented yet.

We present an improvement of context-bounded reachability algorithms that
no longer requires to consider each trace individually. Our algorithm admits a
symbolic implementation, using BDDs, which makes it usable in practice. We
have implemented this approach as an extension of the jMoped tool [15]. The
implementation can deal with Java code “as is”, without replacing non-native
libraries by stubs or manually translating the code into the modelling language
of the checker. More specifically, the contributions of the paper are as follows:

– A new algorithm for the computation of the states reachable after a bounded
number of context switches, based on lazy splitting. The algorithm deals
symbolically with sets of traces that do not need to be distinguished, and
splits them only when necessary. It addresses the same problem as [14], but
with a different approach. The techniques of [11,12] and [14] are compared
in some more detail in the conclusions.

– Implementations of the algorithm of [11,12] and the new algorithm in the
jMoped tool.

– Optimizations of the algorithm for dealing with Java programs.
– Experimental evaluation on different versions of the Bluetooth driver con-

sidered in [9,10], and on the java.util.Vector class.

We proceed as follows: Section 2 discusses preliminaries, recalls the details
of the context-bounded reachability, and gives an overview of previous work
(i.e., [11,12]) and ours. Section 3 presents the novel elements of our algorithm.
Section 4 discusses details of our implementation, and Section 5 provides exper-
imental data. We conclude in Section 6.

2 Context-Bounded Reachability

In this section we define the problem we are working on and briefly discuss
previous solutions.

272 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

2.1 Pushdown Networks

We will consider systems with n parallel processes, where n is a positive integer.
Let [n] = {1, . . . , n}. A pushdown network is a triple N = (G, Γ, (Δi)[n]), where:

– G is a finite set of globals ;
– Γ is a finite stack alphabet ;
– Δi, for each i ∈ [n], is the finite set of transition rules for the i-th process

(see below for its precise definition).

A local configuration of N is a pair (g, α) ∈ G × Γ ∗, i.e. a global and a word
over the stack alphabet. A global configuration of N is a tuple (g, α1, . . . , αn),
where g is a global and α1 to αn are words over the stack alphabet. For bet-
ter distinction, we will denote local configurations by lowercase letters (e.g., c)
and global configurations by uppercase letters (e.g., C). Intuitively, the system
consists of n processes, each of which have some local storage (i.e., the local
storage of the i-th process is the word αi), and the processes can communicate
by reading and manipulating the global storage represented by g. A pushdown
system is a pushdown network where n = 1.

For each i ∈ [n], Δi contains rules of the form 〈g, γ〉 ↪→ 〈g′, α〉, where g, g′

are globals, γ ∈ Γ , and α ∈ Γ ∗. We define the local transition relation of the
i-th process, written →i, as follows: (g, γβ) →i (g′, αβ) iff 〈g, γ〉 ↪→ 〈g′, α〉 in
Δi and β ∈ Γ ∗. In other words, each process by itself is a pushdown system;
however, its control location is the global store shared by all processes. The
transition relation of N , denoted →N or just → for short, is defined as follows:
(g, α1, . . . , αi, . . . , αn) →N (g′, α1, . . . , α

′
i, . . . , αn) iff (g, αi) →i (g′, α′

i). By →∗
i ,

→∗
N , →∗, we denote the reflexive and transitive closures of these relations.

2.2 Extensions

The computational model introduced in Section 2.1 is equivalent to the concur-
rent pushdown systems (CPS) originally used by Qadeer and Rehof [11]. In [12]
an extension was studied, called APN. There, every thread has an additional lo-
cal state, and transitions can either be “global” (depending on the global state,
the local state of the thread and its stack) or “local” (depending only on the
latter two). APN have the same expressive power as CPS, but allow for more
refined complexity analysis. Since this aspect plays only a minor role in this pa-
per, we chose to omit local states to simplify the presentation. However, it will
be easy to see that our techniques also work for APN, with minor modifications.

Both [11] and [12] also studied extensions of the model with “dynamic” rules,
i.e. the ability to fork new threads. We do not present this aspect in any detail
here because the context-bounded reachability problem for systems with thread
creation can be reduced to the context-bounded reachability problem for systems
without (see [11] for details). Our implementation, discussed in Sections 4 and
5, does handle thread creation, and in these cases we denote a “fork” rule by
〈g, γ〉 ↪→ 〈g′, α′〉 � α′′. In this case, the global changes from g to g′, the active
process replaces its top-of-stack symbol γ by α′, and a new thread with stack
contents α′′ is generated.

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 273

2.3 The Reachability Problem for Pushdown Networks

Let N = (G, Γ, (Δi)i∈[n]) be pushdown network. We define the following reach-
ability problems:

– Given i ∈ [n] and an initial local configuration c0 = (g0, α0), the local
(forward) reachability problem for the i-th process is to compute the set
post∗i (c0) = { c | c0 →∗

i c }, i.e. the set of local configurations reachable by
moves of the i-th process alone.

– Given an initial global configuration C0 = (g0, α1, . . . , αn), the (forward)
reachability problem forN is to compute the set post∗(C0) = {C | C0 →∗ C }
of globally reachable configurations.

Both problems can be extended to sets of configurations in the usual manner.
It is well-known that local reachability is closed under regularity, i.e. post∗i (c0)
is a regular set, and the result still holds when c0 is replaced by a regular set of
configurations. Moreover, the local reachability problem can be solved efficiently,
in time proportional to |G|2 · |Δi| [16].

In contrast, the (global) reachability problem is undecidable; more precisely,
it is in general undecidable whether C ∈ post∗(C0), for a given pair C, C0 [1].
For this reason, one tries to approximate post∗(C0). One such approximation,
introduced in [11], uses the notion of context-bounded computations:

A context of N is a sequence of transitions where all moves are made by a
single process. In other words, let us define a (global) reachability relation �

as follows: (g, α1, . . . , αi, . . . , αn) � (g′, α1, . . . , α
′
i, . . . , αn) iff (g, αi)→∗

i (g′, α′
i)

for some i ∈ [n]. Then � is a relation between global configurations reachable
from each other in a single context. Correspondingly, we define post

∗
i (C0) =

{C | C0 →∗
i C }, i.e. post

∗
i (C0) is the set of global configurations reachable from

C0 by moves of the i-th process. Moreover, we denote by �j , where j ≥ 0,
the reachability relation within j contexts: �0 is the identity relation on global
configurations, and �i+1 = �i ◦�. We can now define our central problem:

– Given k ≥ 1 and an initial global configuration C0, the (forward) context-
bounded reachability problem is to compute the set of configurations reach-
able in at most k contexts, i.e. the set post∗≤k(C0) = {C | ∃j ≤ k: C0 �j C }.

The context-bounded reachability problem is decidable, and its solution can be
computed in a time that is essentially proportional to (n · |G|)k [11,12].

2.4 View Tuples

Let us fix a pushdown network N = (G, Γ, (Δi)i∈[n]), a global configuration C0,
and a context bound k ≥ 1 for the rest of the section.

The principal problem that one faces when solving the context-bounded reach-
ability problem is to find a data structure for representing the set post∗≤k(C0).
Note that while the global storage can assume only finitely many values, the
number of possible stack contents is infinite, thus finding a suitable data struc-
ture for representing sets of global configurations is not straightforward. Here,

274 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

we define a data structure that will be helpful to discuss the algorithms in pre-
vious work [11,12] and in this paper. The main idea is to represent post∗≤k(C0)
by so-called view tuples, which represent subsets of post∗≤k(C0).

Definition 1. Let c = (g, α1, . . . , αn) be a global configuration. For i ∈ [n], we
call the local configuration (g, αi) the i-view of c. A view tuple T = (V1, . . . , Vn)
is a collection where Vi is a regular set of local configurations, i.e. a set of i-
views for each i ∈ [n], represented by a finite automaton. T is associated with
the following set of configurations:

[[T]] = { (g, α1, . . . , αn) | (g, αi) ∈ Vi for all i ∈ [n] }

Not every set of global configurations can be represented as a view tuple. As a
running example, let us consider a system with two processes, globals g, g′, g′′ and
stack alphabet a, b. Consider the set C0 = {(g, a, a), (g′, b, a), (g′′, a, a), (g′′, b, b)}.
Suppose that there is a view tuple T = (V1, V2) such that [[T]] = C0. Then V1

necessarily contains the pair (g′′, a) and V2 the pair (g′′, b). But then, [[T]] also
contains (g′′, a, b), which is not in C0.

More importantly, the sets arising in the context-bounded reachability prob-
lem are not representable as view tuples. Continuing the example, suppose that
Δ1 = {〈g, a〉 ↪→ 〈g′, b〉} and Δ2 = {〈g, a〉 ↪→ 〈g′′, a〉, 〈g′, a〉 ↪→ 〈g′′, b〉}. Then
post∗≤2((g, a, a)) is exactly the set C0 from above.

In general, therefore, the result of a context-bounded reachability query is
only representable as a union of view tuples. For instance, C0 can be partitioned
into the sets C1 := {(g, a, a), (g′′, a, a)} and C2 := {(g′, b, a), (g′′, b, b)}, which are
both representable as view tuples. As we shall see, our work differs from [11,12]
in the way we choose the view tuples contained in this union; more to the point,
our representation requires (in general) fewer tuples.

2.5 A Meta-Algorithm for Context-Bounded Reachability

In this section we discuss a meta-algorithm to solve the context-bounded reach-
ability problem that unifies the solutions in [11,12] and in this paper. It can be
characterised as a worklist algorithm that computes the effect of one context at
a time. While the algorithms from [11,12] differ in some details, they can – for
the purposes of this paper – be summarised by Algorithm 1.

The entries of the worklist are triples (j, i, T), where T is a view tuple reach-
able within j contexts such that i was the process that made the last move
(i = 0 iff j = 0). Initially, the worklist contains just one view tuple representing
the initial configuration C0. In each iteration, the algorithm picks a view tuple
from the worklist and computes the configurations that can be reached through
a single additional context. Notice that since we are dealing with regular sets of
configurations, this can be done by solving the local reachability problem, see,
e.g., [16] or [17] for details. The previously active process, i, is excluded from
consideration because it would not add any new information.

The result of the local reachability algorithm is denoted by P , and the prin-
cipal problem is that P may no longer be representable as a single view tuple.

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 275

Input: N = (G, Γ, (Δi)i ∈ [n]), context bound k, initial configuration
C0 = (g0, α

1
0, . . . , α

n
0)

Output: the set of reachable global configurations.

result := ∅;1

worklist := { (0, 0, ({(g0, α
1
0)}, . . . , {(g0, α

n
0)})) };2

while worklist �= ∅ do3

remove (j, i, T) from worklist;4

add [[T]] to result ;5

if j < k then6

forall i′ ∈ [n] \ {i} do7

P = post
∗
i′([[T]]);8

forall T ′ ∈ split(P) do9

add (j + 1, i′, T ′) to worklist;10

return result ;11

Algorithm 1. Worklist algorithm for context-bounded reachability

The task of the split function in line 1 is to generate a set of view tuples such
that

⋃
T ′∈split(P)[[T

′]] = P . Our work differs from previous solutions in the way
this function is implemented. In [11,12], split works as follows:

split(P) = {Tg | g ∈ G }, where
Tg = P ∩ { (g, α1, . . . , αn) | αi ∈ Γ ∗, i ∈ [n] }

It can be shown that the resulting sets are always view tuples. However, after each
context, every worklist entry is split |G| different ways. In the following, we call
this approach eager splitting. Loosely speaking, eager splitting processes nk · |G|k
worklist entries. Moreover, after each split, the algorithm will consider every
element of G individually, which does not lend itself to a meaningful symbolic
implementation (e.g., using efficient set representations such as BDDs). These
reasons have been the major obstacle for a practical adoption of these algorithms.

In Section 3, we identify a coarser partition of P that leads to fewer splits,
in the hope of making the algorithm faster in practice. We call this approach
lazy splitting. We also describe how the partition can be computed using BDDs,
which gives rise to a symbolic implementation of our algorithm.

3 Lazy Splitting

As discussed in Section 2.5, the algorithm for context-bounded reachability is
parametrised by a function that splits the result of a local reachability query into
view tuples. In this section, we present the key ingredient for our lazy splitting
approach, i.e. we show how to (symbolically) compute a coarse partitioning.

To simplify the presentation we consider the case of two processes and assume
w.l.o.g. that the second process is active, i.e. given a view tuple T = (V1, V2),

276 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

the task is to (i) compute the set post
∗
2([[T]]) and (ii) split this set into new

view tuples. Recall that a global configuration of a pushdown network with
two processes is a tuple c = (g, α1, α2), where g is a global and αi is a local
configuration of the i-th process.

Throughout this section we identify a set X ⊆ X1× . . .×Xn and the predicate
X(x1, . . . , xn) such that X(a1, . . . , an) holds iff (a1, . . . , an) ∈ X . We liberally
mix set and logical notations, and write for instance A(x) = ∃ y: B(x, y) to
mean A = { x | ∃y: B(x, y) }. Abusing notation, we shall sometimes denote the
set [[T]], where T is a view tuple, simply by T .

We proceed as follows: We first identify a property between globals (called
confluence) that prevents certain configurations from being included in the same
partition. We then show how the confluence relation can be computed symboli-
cally, using BDDs, and finally how partitions can be computed from this relation.

3.1 Confluence and Safe Partitions

Let R2(g, α, g′, α′) be the reachability predicate for the second thread, i.e.,
R2(g, α, g′, α′) holds iff (g, α) →∗

2 (g′, α). (As usual, we use unprimed variables
for the initial configuration and primed ones for the final configuration.) Using
standard logical manipulations we obtain

post
∗
2(T)(g′, α1, α

′
2) = ∃g :

(
V1(g, α1) ∧ ∃α2 : V2(g, α2) ∧R2(g, α2, g

′, α′
2)︸ ︷︷ ︸

=:U2(g,g′,α′
2)

)
.

Since g is existentially quantified, post
∗
2(T) is not always a view tuple. We

present a generic approach for representing it as a union of view tuples. The
approach is parameterized by a partition of G. We need the following definition.

Definition 2. Two distinct global values ga, gb ∈ G are confluent if there exist
g′, α′

2a, α′
2b such that U2(ga, g′, α′

2a) and U2(gb, g
′, α′

2b) hold. A partition of G is
safe if none of its sets contains two confluent values.

Intuitively, two values in the same set of a safe partition cannot be transformed
by the second thread into the same value. For instance, let us return to the
example from Section 2.4. If we choose T0 such that [[T0]] = {(g, a, a), (g′, b, a)},
then post

∗
2(T0) = C0 because (g, a, a) →2 (g′′, a, a) and (g′, b, a) →2 (g′′, b, b).

In other words we have U2 = {(g, g′′, a), (g′, g′′, b)}. Therefore, g and g′ are
confluent, and any safe partition must keep these two values apart.

Notice that safe partitions always exist, because the partition that splits G
into singletons is always safe. However, finding a coarser safe partition is not
necessarily straightforward because U2 may contain infinitely many tuples, and
we will show how to deal with this problem later. For the time being, it suffices to
point out that any safe partition can be used to represent post

∗
2(T) as a union of

view tuples. Let G1, . . . , Gm be a safe partition of G. We define sets V ′
11, . . . , V

′
1m

of 1-views and sets V ′
21, . . . , V

′
2m of 2-views as follows:

V ′
1j(g

′, α1) = ∃g : V1(g, α1) ∧Gj(g) ∧ ∃α′
2 : U2(g, g′, α′

2) (1)
V ′

2j(g
′, α′

2) = ∃g : U2(g, g′, α′
2) ∧Gj(g) (2)

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 277

Intuitively, V ′
1j contains the local configurations of the first thread for which

the second thread can reach the local configuration α′
2 while leaving the global

variable in state g′. Therefore, if the first thread initially has (g, α1) as 1-view,
it ends with (g′, α1): the local configuration α1 has not changed, but the value
of the global variable has. The intuition behind V ′

2j is similar.
In the example above, we could choose G1 = {g, g′′} and G2 = {g′} as a

safe partition. Under this assumption the view tuples (V ′
11, V

′
21) and (V ′

12, V
′
22)

as defined above would represent the sets C1 and C2 from Section 2.4, whose
union is indeed equal to C0. The following theorem, whose proof is given in the
appendix, states that this works for every safe partition.

Theorem 1. Let {V ′
1j}j∈[m] and {V ′

2j}j∈[m] be defined as in (1) and (2). Then

post
∗
2(T)(g′, α1, α

′
2) =

m∨

j=1

(
V ′

1j(g
′, α1) ∧ V ′

2j(g
′, α′

2)
)

.

Proof. (⇒):

post
∗
2(T)(g′, α1, α

′
2)

= ∃g : V1(g, α1) ∧ U2(g, g′, α′
2) (def. of post

∗
2(T))

= ∃g : V1(g, α1) ∧ U2(g, g′, α′
2) ∧ ∃j ∈ [m] : Gj(g)

= ∃j ∈ [m] : V ′
1j(g

′, α1) ∧ V ′
2j(g

′, α′
2) (logic, def. of V ′

1j , V
′
2j)

⇒
m∨

i=1

(
V ′

1j(g
′, α1) ∧ V ′

2j(g
′, α′

2)
)

(⇐): Let (g′, α1, α
′
2) be a triple satisfying V ′

1j(g
′, α1) ∧ V ′

2j(g
′, α′

2) for some
j ∈ [m]. By the definition of V ′

1j and V ′
2j there exist ga, gb, and α′′

2 such that
V1(ga, α1), Gj(ga), U2(ga, g′, α′′

2), U2(gb, g
′, α′

2), and Gj(gb) hold. So, in particu-
lar, ga and gb belong to the same set of the partition of G, namely Gj . Further-
more, since U2(ga, g′, α′′

2), U2(gb, g
′, α′

2), it follows from Definition 2 that ga and
gb are either confluent or equal. Since the partition used to construct {V ′

1j}j∈[m]

and {V ′
2j}j∈[m] is safe, we get ga = gb. So, in particular, U2(ga, g′, α′

2) holds,
which together with V1(ga, α1) implies post

∗
2(T)(g′, α1, α

′
2).

3.2 Computing the Confluence Relation

In this part, we show how to compute the relation C(x, y) of confluent pairs x, y
symbolically, using BDDs. By Definition 2, we have

C(ga, gb) = ga �= gb ∧ ∃g′, α′
2a, α′

2b : U2(ga, g′, α′
2a) ∧ U2(gb, g

′, α′
2b)

Notice that the relation U2 contains stack words and cannot be directly rep-
resented by a BDD. However, we first show that U2 can be represented as a
symbolic finite automaton and then use the automaton to compute C.

Let us recall the definitions of U2(g, g′, α′
2) and post∗2(V2)(g′, α′

2):

U2(g, g′, α′
2) = ∃α2 : V2(g, α2) ∧R2(g, α2, g

′, α′
2)

post∗2(V2)(g′, α′
2) = ∃g, α2 : V2(g, α2) ∧R2(g, α2, g

′, α′
2)

278 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

We now reduce the computation of U2 to a local reachability problem w.r.t. a
modified pushdown system (G×G, Γ, Δ′

2). In other words, we change the system
by duplicating the globals. Moreover, we have 〈(ḡ, g), γ〉 ↪→ 〈(ḡ, g′), α〉 in Δ′

2 iff
〈g, γ〉 ↪→ 〈g′, α〉 in Δ2, i.e. the value of the first copy is never changed by any
transition rule. The reachability relation for the second thread of the modified
system is given by R2((ḡ, g), α2, (ḡ′, g′), α′

2) = R2(g, α2, g
′, α′

2) ∧ ḡ = ḡ′. Define
V 2((ḡ, g), α2) = V2(g, α2) ∧ ḡ = g. We have:

U2(g, g′, α′
2) = ∃α2 : V2(g, α2) ∧R2(g, α2, g

′, α′
2)

= ∃α2 : V 2((g, g), α2) ∧R2((g, g), α2, (g, g′), α′
2)

= ∃¯̄g, ḡ, α2 : V 2((¯̄g, ḡ), α2) ∧R2((¯̄g, ḡ), α2, (g, g′), α′
2)

= post∗2(V2)((g, g′), α′
2)

Recall that if T = (V1, V2) is a view tuple, then V1 and V2 (and V 2) are regular
sets, representable by symbolic finite automata [17]. Moreover, [17] shows how
to transform a symbolic automaton for V 2 into one for U2 = post∗2(V 2).

We turn to the question how to compute C from the automaton representing
U2. For this, let us define U ′

2(g, g′) := ∃α: U2(g, g′, α). Then we have:

C(ga, gb) = ga �= gb ∧ ∃g′: U ′
2(ga, g′) ∧ U ′

2(gb, g
′)

The modified pushdown system defined above has G × G as its set of globals.
Thus, the symbolic automaton for U2 uses G×G as initial states, and a configura-
tion ((g, g′), α) is accepted if, starting at state (g, g′), the automaton can read the
input α and end up in a final state. Thus, U ′

2(g, g′) holds if some input is accepted
fromthe state (g, g′). Since the transitions of a symbolic automaton are represented
by BDDs, this can be easily implemented with standard BDD operations.

3.3 Computing a Safe Partition

Given the confluence relation C, our final goal now is to compute a safe partition.
Notice that a partition is safe if and only if its sets are cliques of ¬C, the
complement of C. Since finding a minimal partition into cliques of a given graph
is NP-complete, we restrict ourselves to finding a reasonably coarse safe partition
in a symbolic manner. The resulting performance of the reachability algorithm
is evaluated in Section 5.

Algorithm 2 shows the computation of the partition. Its inputs are the conflu-
ence relation C and an arbitrary total order relation L on globals. The algorithm
repeatedly computes sets of the partition. The inner loop makes sure that F is
a clique of S when exiting the loop. D contains the confluent pairs (x1, x2) of
F ×F such that x1 is smaller than x2 with respect to the order L. If D = ∅ then
F is a clique. Otherwise, for each (x1, x2) ∈ D we remove x1. The rôle of L is
to guarantee that D is antisymmetric, and so that if x1 and x2 are confluent we
remove exactly one of them from F .

Notice that the algorithm only uses boolean operations and existential quan-
tification, and can therefore be easily implemented in a BDD library, given BDD
representations of L and C. The computation of C was presented in Section 3.2,

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 279

Input: Confluence relation C(x, y), total order L(x, y)
Output: A safe partition G1, . . . Gm of G

S(x, y) := ¬C(x, y); j := 0;1

while S �= ∅ do2

pick (x0, y0) from S;3

F (x) := S(x, y0);4

while true do5

D(x, y) := L(x, y) ∧ F (x) ∧ F (y) ∧ ¬S(x, y);6

exit if D = ∅;7

F (x) := F (x) ∧ ¬(∃y : D(x, y))8

j := j + 1;9

Gj(x) := F (x);10

S(x, y) := S(x, y) ∧ ¬F (x) ∧ ¬F (y);11

Algorithm 2. An algorithm for computing equivalence classes

and a BDD representation for L ⊆ G × G is trivial to generate, because by
assumption the set G is finite, and any total order (e.g. some lexicographical
ordering based on the BDD variables) will do.

Finally, equations (1) and (2) only use Gj , V1, U2, which are all representable
as BDDs or as symbolic automata, connected by boolean operations. Thus, the
new view tuples can be obtained by standard operations on BDDs and automata.

4 Implementation

We implemented the algorithm presented here in jMoped [18,15], an Eclipse
plug-in for testing Java programs by means of model-checking techniques. To
test a method, users specify the number of bits of the program variables and
the heap size (no knowledge of model-checking techniques is required). jMoped
computes the reachable states of the program for all values of the method’s argu-
ments within the given range. During the analysis, jMoped displays progress by
labelling lines of code with diverse markers, e.g. red markers for assertion viola-
tions, green and black markers for reachable and unreachable lines, respectively.
Like Java virtual machines we use heaps to simulate Java objects. In particular,
the heap size determines the number of objects that can be generated.

4.1 The Model

Internally, jMoped operates on pushdown networks that can also contain rules
for thread creation (cf. Section 2.2). jMoped uses a symbolic representation of
pushdown networks like in [17], where the stack symbols are tuples (l, γ) such
that l is a valuation of local variables and γ a label, i.e. a possible value of the pro-
gram counter. A network is stored as a list of symbolic rules. For instance, given

280 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

labels γ, γ′, γ′′, the set of all rules of the form 〈g, (l, γ)〉 ↪→ 〈g′, (l′, γ′)(l′′, γ′′)〉 is
represented by one single rule annotated with a relation R:

γ ↪→ γ′γ′′ R(g, l, g′, l′, l′′)

R specifies which tuples correspond to a rule and is stored as a BDD.

4.2 The Translator

jMoped analyzes which classes are statically reachable from the starting method,
and then translates their bytecodes into a pushdown network. The translation
process is relatively simple: in most cases a bytecode instruction is mapped into
one symbolic rule. However, the BDD for the symbolic rule is not computed
beforehand; we only store the information needed to construct it on-the-fly if
needed. Constructing BDDs only on demand saves considerable resources.

We maintain four types of variables when analyzing Java bytecodes. Static
variables and local variables are modelled by globals and locals, respectively.
Heaps are essentially arrays of globals. When an object is created, it occupies
some parts of the array where it keeps relevant information such as fields, object
type, and lock information. The object itself can be seen as a pointer to the
array. Objects are never garbage collected in the current implementation.

The Java virtual machine uses an operand stack for each method call. This
stack can be loaded with constants or values from local variables or fields. Many
instructions pop operands from the stack, operate on them, and push the result
back. Operand stacks are also used to prepare parameters for method calls and
to receive method results. The maximum depth of the operand stack for a given
method is determined at compile time and stored in the corresponding class file.
jMoped models operand stacks by arrays of locals plus an extra top-of-stack
pointer. The array lengths are equal to the maximum depths of the stacks.

We give a flavour of how jMoped works. Figure 1 shows a small Java program,
its bytecodes, and a simplified version of the translation into a pushdown net-
work. Bytecode instructions are translated one-to-one into transition rules. The
operand stack is simulated by the array s and the top-of-stack pointer sp. Sim-
ilarly, we use heap and ptr for the heap and the heap pointer. The top-of-stack
and heap pointers are initialized to 0 and 1, respectively. The heap at index zero
is reserved for null objects. Local variables have identifiers of the form lvi.

At the beginning of m, the global variable x is initialized to zero in two steps.
The constant 0 is pushed onto the operand stack, retrieved, and stored in x.
Then, a new object of type Thread is created, and a reference to the object
is pushed onto the operand stack. jMoped simulates this behaviour by pushing
the current value of the heap pointer and updating it to a next (empty) heap
element. The heap at ptr is also set to the object type of Thread, which is 1 in
this example. We update the heap pointer based on sizes of objects. Every object
needs one heap element for each field plus an extra heap element for storing its
type. The object for Thread has size two (see later), and so the pointer gets
updated by two. The instruction dup duplicates the top element of the operand

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 281

class C { 0: iconst_0
static int x; 1: putstatic C.x
static void m() { 4: new Thread

x = 0; 7: dup
new Thread(new Runnable() { 8: new C$1

public void run() { 11: dup
// New thread works 12: invokespecial C$1.<init>

}}).start(); 15: invokespecial Thread.<init>
// Main thread works 18: invokevirtual Thread.start

} 21: ...
} e: return

m0 ↪→ m1 (s[sp]′ = 0 ∧ sp′ = sp + 1)
m1 ↪→ m4 (x′ = s[sp − 1] ∧ sp′ = sp − 1)
m4 ↪→ m7 (s[sp]′ = ptr ∧ sp′ = sp + 1 ∧ heap[ptr]′ = 1 ∧ ptr′ = ptr + 2)
m7 ↪→ m8 (s[sp]′ = s[sp − 1] ∧ sp′ = sp + 1)
m8 ↪→ m11 (s[sp]′ = ptr ∧ sp′ = sp + 1 ∧ heap[ptr]′ = 2 ∧ ptr′ = ptr + 1)
m11 ↪→ m12 (s[sp]′ = s[sp − 1] ∧ sp′ = sp + 1)
m12 ↪→ c0 m15 (lv′

0 = s[sp − 1] ∧ sp′′ = sp − 1)
m15 ↪→ t0 m18 (lv′

0 = s[sp − 2] ∧ lv′
1 = s[sp − 1] ∧ sp′′ = sp − 2)

m18 ↪→ m21 � r0 (heap[heap[s[sp − 1] + 1]] = 2 ∧ lv′′
0 = s[sp − 1] ∧ sp′ = sp − 1)

.
me ↪→ ε

Fig. 1. A small Java programs, its bytecodes, and a corresponding pushdown network

stack. At offset 8, an object of type C$1 is allocated. Class C$1 is an inner class of
C which implements the interface Runnable. C$1 specifies the method run which
will be executed when the thread starts. Note that C$1 has type 2 and size 1.

Two initialization methods are called at offsets 12 and 15 for C$1 and
Thread, respectively. The corresponding translation also shows how arguments
are passed. A reference to C$1 (resp. to Thread) is passed to lv0 when initializing
C$1 (resp. Thread). However, for Thread a reference to C$1 is also passed as the
second argument, and a reference to C$1 is stored as its only field (not shown).
Recall that Thread has size 2 for the purpose of storing an object reference which
implements Runnable interface. This information is used later on at offset 18.
There, we fork a new thread r0 if the only field of the thread specified by the
top element of the operand stack has type 2. Also, a reference to C$1 is passed
to the new thread. Note that we need information about object types to start
the right thread. The same technique is used in the case of virtual method calls.

jMoped translates all Java bytecode instructions. Calls to Java libraries are
not replaced by stubs, since the bytecodes of the library are available. Notice
however that some classes contain native code, and for those stubs are necessary.

5 Experiments

All experiments were performed on an AMD 3 GHz machine with 64 GB memory.

282 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

5.1 java.util.Vector Class

In this experiment we consider class java.util.Vector from the Java library.
The Vector class implements a growable array of objects. In [19], a race condition
in a constructor of Vector was reported. The following test method illustrates
the situation where the race condition can occur.

static void test(Integer x) {
final Vector<Integer> v1 = new Vector<Integer>();
v1.add(x);
new Thread(new Runnable() {

public void run() { v1.removeAllElements(); }
}).start();
Vector<Integer> v2 = new Vector<Integer>(v1);
assert(v2.isEmpty() || v2.elementAt(0) == x);

}

The method creates two vectors. First an empty vector v1 is created, and then
an integer x is added to it as its first element. After that, a new thread is forked,
which removes all elements from v1 (only x in this case). In parallel, the first
thread creates a copy v2 of v1. Intuitively, only two cases are possible: if the
elements of v1 are removed before v2 is created, then v2 is empty; if v2 is
created before the elements of v1 are removed, then the first element of v2 is
equal to x. The last line of code asserts this property.

However, in Java 5.0, the constructor of v2 is not atomic, and as a result
the assertion can be violated. jMoped detects this bug. The first half of Table 1
shows the time until the bug is found, the numbers of BDD nodes required, and
the numbers of view tuples inspected in several experiments. In all experiments
the bit size of all variables except x is set to 8, the heap size to 50 blocks, and
the context bound to 3. The experiments differ on the size of x (1 to 8 bits), and
on the splitting mode (eager or lazy).

In the current version of Java (version 6.0), the bug has been fixed. We reran
all experiments with Java 6.0 and verified that, within the given bounds, the
assertion is not violated. The second half of Table 1 presents the results.

The behaviour of the program is independent of the value of x. The lazy
approach benefits from this, and does not split at all when switching contexts.
Therefore, the running time remains essentially constant when the number of
bits of x increases. On the other hand, the time for eager splitting increases
exponentially. However, the eager approach is faster and requires fewer BDD
nodes when x is small. One of the reasons is that the lazy approach requires an
extra copy of globals for keeping relations between current values of globals and
initial values when the thread is awakened, which results in bigger BDDs.

One could argue that, since the Java 5.0 bug is already detected when x has
1 bit, the lazy approach does not give any advantage in this case. For Java 6.0,
however, the analysis of larger ranges provides more confidence in the correctness
of the code, and here the lazy approach clearly outperforms eager splitting.

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 283

Table 1. Experimental results: java.util.Vector class

Sizes of x (bits) 1 2 3 4 5 6 7 8
J
av

a
5
.0

Eager Time (s) 9.3 10.8 16.9 31.1 67.9 117.8 225.7 457.9
Nodes (×106) 0.4 0.5 0.8 1.4 2.5 5.2 9.0 18.1
View tuples 48 87 167 327 648 1348 2567 5126

Lazy Time (s) 19.7 17.7 19.6 17.5 17.2 18.9 16.7 18.8
Nodes (×106) 1.2 1.2 1.2 1.3 1.2 1.3 1.3 1.3
View tuples 3 3 3 3 3 3 3 3

J
av

a
6
.0

Eager Time (s) 15.1 18.6 37.5 64.3 147.7 301.7 642.0 1732.0
Nodes (×106) 0.4 0.7 1.1 2.0 3.7 7.1 13.9 27.9
View tuples 105 209 417 833 1655 3329 6657 13313

Lazy Time (s) 20.9 20.8 19.4 22.3 20.8 18.8 23.4 23.2
Nodes (×106) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
View tuples 3 3 3 3 3 3 3 3

Finally, we remark that the example is not as small as it seems. While the test
method has only a few lines of code, the class Vector actually involves around
130 classes which together translate into a pushdown network of 30,000 rules. We
are able to automatically translate all classes without any manipulations except
java.lang.System, where the method arraycopy is implemented in native code.
We need to manually create a stub in this case.

5.2 Windows NT Bluetooth Driver

In this experiment, we consider three versions of a Windows NT Bluetooth
driver [20,9]. Figure 2 shows a Java implementation of the second version. All
three versions follow the same idea and differ only in some implementation de-
tails. All versions use the following class Device, which contains four fields:

int pendingIo; boolean stopFlag, stopEvent, stopped;
Device(){ pendingIo = 1; stopFlag = stopEvent = stopped = false; }

– pendingIo counts the number of threads that are currently executing in the
driver. It is initialized to one in the constructor, increased by one when a
new thread enters the driver, and decreased by one when a thread leaves.

– stopFlag becomes true when a thread tries to stop the driver.
– stopEvent models a stopping event, fired when pendingIo becomes zero.

The field is initialized to false and set to true when the event happens.
– stopped is introduced only to check a safety property. Initially false, it is set

to true when the driver is successfully stopped.

The drivers has two types of threads, stoppers and adders. A stopper calls stop
to halt the driver. It first sets stopFlag to true before decrementing pendingIo
via a call to dec. The method dec fires the stopping event when pendingIo is
zero. An adder calls the method add to perform I/O in the driver. It calls the
method inc to increment pendingIo; inc returns a successful status if stopFlag

284 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

static void add(Device d) {
int status = inc(d);
if (status > 0) {

assert(!d.stopped);
// Performs I/O

}
dec(d);

}
static void stop(Device d) {

d.stopFlag = true;
dec(d);
while (!d.stopEvent) {}
d.stopped = true;

}
static int inc(Device d) {

int status;
synchronized(d) {

d.pendingIo++;
}
if (d.stopFlag) {

dec(d);
status = -1;

} else status = 1;
return status;

}
static void dec(Device d) {

int pio;
synchronized (d) {

d.pendingIo--;
pio = d.pendingIo;

}
if (pio == 0)

d.stopEvent = true;
}

Fig. 2. Version 2 of Bluetooth driver

is not yet set. It then asserts that stopped is false before start performing I/O
in the driver. The adder decrements pendingIo before exiting.

In the first version of the driver, the method inc was implemented differently:

private int inc(Device d) {
if (d.stopFlag) return -1;
synchronized (d) { d.pendingIo++; }
return 0;

}

Moreover, the if-statement in add reads if (status == 0). [20] reports a race
condition for this version, which occurs when the adder first runs until it checks
the value of stopFlag. Then, the stopper thread runs until the end, where it
successfully stops the driver. When the context switches back to the adder, it
returns from inc with status zero and finds out that the assertion is violated.

In [9] a bug in the second version of the driver was reported. The bug only
occurs in the presence of at least two adders, and four context switches are
required to unveil it: (i) The first adder increases pendingIo to 2 and halts just
before the assertion statement. (ii) The stopper sets stopFlag to true, decreases
pendingIo back to 1, and waits for the stopping event. (iii) The second adder
increases pendingIo to 2. However, since stopFlag is already set it decreases
pendingIo back to 1 again. It returns from inc with status −1, which makes
pendingIo become 0 and fires the stopping event. (iv) The stopper acknowledges
the stopping event and sets stopped to true. (v) The first adder violates the
assertion. Note that the bug can also be found in a slightly different manner
where the second adder starts before the stopper.

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 285

Table 2. Experimental results: Bluetooth drivers (left) and binary search trees (right)

Version 1 Version 2 Version 3
Eager Lazy Eager Lazy Eager Lazy

Time (s) 1.1 1.3 51.7 36.0 11.9 6.0
Nodes (×103) 46 88 720 1851 195 518
View tuples 21 4 1460 154 234 16
Contexts 3 5 4

Threads, Contexts Time(s)

1 + 1, 3 3.8
1 + 1, 4 8.3
2 + 1, 4 127.1
2 + 1, 5 712.3
2 + 1, 6 5528.2
2 + 2, 5 6488.0
2 + 2, 6 timeout

The third version moves dec(d) inside the if-block in the method add. This
eliminates the bug for the case with two adders and one stopper. However,
jMoped found another assertion violation for one adder and two stoppers. We
believe that this has not been previously reported, although it is less subtle
than the previous bugs, requiring three context switches: (i) The adder increases
pendingIo to 2 and halts just before the assertion statement. (ii) The first
stopper decreases pendingIo to 1. (iii) The second stopper decreases pendingIo
to 0 and sets stopped to true. (iv) The adder violates the assertion.

Table 2 reports experimental results on these three versions. Notice that the
lazy approach always involves fewer view tuples. This becomes more obvious
when the number of contexts grows. We argue that by splitting lazily we can
palliate explosions in the context-bounded reachability problem.

5.3 Binary Search Trees

We briefly give an intuition on the scalability of our approach by considering a
binary search tree implementation [21] that supports concurrent manipulations
on trees. Unlike the previous two experiments, this algorithm is recursive. There
are two types of threads, inserter and searcher. An inserter puts a node into the
tree while a searcher looks for a node with a given value. We consider the situ-
ation where inserters insert non-deterministic values into the tree and searchers
search for the same values. We run jMoped with different numbers of inserters
and searchers, and generate all reachable configurations within given contexts.

Table 2 gives the running times. The numbers of threads are in the form
x + y, where x and y are the numbers of inserters and searchers, respectively.
The analysis took more than three hours in the case of 2 + 2, 6.

6 Conclusions

We have reported on (to the best of our knowledge) the first implementation of
the context-bounded technique of Qadeer and Rehof [11]. The implementation
extends the jMoped tool, and allows to deal directly with Java code, mostly
without having to manually manipulate it or replace Java libraries by stubs.

286 D. Suwimonteerabuth, J. Esparza, and S. Schwoon

The algorithm for context-bounded reachability as presented in [11] explicitly
deals with each possible trace of the system within the context bound. Therefore,
if the number of traces is exponential, then the algorithm necesarily takes expo-
nential time. We have presented a symbolic technique, lazy splitting, to palliate
this problem. Loosely speaking, the technique tries to symbolically examine all
traces in the same computation, and splits the set of traces only when necessary.

We have tested our implementation on a number of examples. Our best result
so far is the fact that we can find the bug in the Vector Java class reported in
[19] without any need for manual manipulation or unsound steps. The program
is compiled including all Java libraries, and the Java bytecode is automatically
translated into our formal model, without manual supervision.

Lal et al. have proposed a new algorithm which does not require to explicitly
examine all possible traces of the system [14]. The main idea is to compute
for each thread a regular transducer accepting the reachability relation of the
thread. Even though this leads to an attractive fully symbolic solution to the
problem, its performance in practice still needs investigation. Even for finite-state
systems, experiments show that the symbolic computation of the reachability
relation by means of iterative squaring is substantially more expensive than the
computation of the set of reachable states (see for instance [22]). While in the
case of multithreaded programs the advantage of a fully symbolic procedure
may compensate for the overhead of computing the reachability relation, this
remains to be seen. We have not followed this path because the algorithm for
the computation of the reachable states is the core of jMoped, and the result of
many optimizations, and so naturally we wished to reuse it.

On a more abstract level, the idea of [14] is that the effect of running a con-
text on a particular thread can be expressed by a summary. The idea of reusing
summaries could also be useful in our setting: as a side effect, the pushdown
reachability algorithm implementing the post∗i function computes (partial) pro-
cedure summaries. Summaries are largely independent of the context for which
they were computed and could potentially be re-used many times during other
called to post∗i . We did not yet use this trick in our implementation.

Acknowledgements. The authors thank Tomáš Brázdil for his helpful comments
and Tayssir Touili and Mihaela Sighireanu for pointing us to some examples.

References

1. Ramalingam, G.: Context-sensitive synchronisation-sensitive analysis is undecid-
able. ACM Trans. Programming Languages and Systems 22, 416–430 (2000)

2. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

3. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

4. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: Proc.
POPL, pp. 303–314. ACM, New York (2007)

Symbolic Context-Bounded Analysis of Multithreaded Java Programs 287

5. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent pro-
grams. In: Proc. POPL, pp. 245–255. ACM, New York (2004)

6. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

7. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. In: Proc. POPL, pp. 62–73. ACM Press,
New York (2003)

8. Bouajjani, A., Esparza, J., Touili, T.: Reachability analysis of synchronized PA-
systems. In: Proc. Infinity (2004)

9. Chaki, S., Clarke, E.M., Kidd, N., Reps, T., Touili, T.: Verifying concurrent
message-passing C programs with recursive calls. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

10. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of multithreaded dynamic
and recursive programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 254–257. Springer, Heidelberg (2007)

11. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

12. Bouajjani, A., Esparza, J., Schwoon, S., Strejček, J.: Reachability analysis of multi-
threaded software with asynchronous communication. In: Ramanujam, R., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

13. La Torre, S., Madhudusan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Proc. TACAS. LNCS, vol. 4963, pp. 299–314 (2008)

14. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Proc. TACAS. LNCS, vol. 4963, pp. 282–298
(2008)

15. jMoped: The tool’s website, http://www7.in.tum.de/tools/jmoped/
16. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model

checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

17. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

18. Suwimonteerabuth, D., Berger, F., Schwoon, S., Esparza, J.: jMoped: A test envi-
ronment for Java programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 164–167. Springer, Heidelberg (2007)

19. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs.
IEEE Trans. Software Eng. 32(2), 93–110 (2006)

20. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI, pp. 14–24 (2004)
21. Kung, H.T., Lehman, P.L.: Concurrent manipulation of binary search trees. ACM

Trans. Database Syst. 5(3), 354–382 (1980)
22. Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model

checking for sequential circuit verification. IEEE TCAD 13(4), 401–424 (1994)

http://www7.in.tum.de/tools/jmoped/

Efficient Stateful Dynamic Partial Order

Reduction�

Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, University of Utah
Salt Lake City, UT 84112, USA

Abstract. In applying stateless model checking methods to realistic
multithreaded programs, we find that stateless search methods are inef-
fective in practice, even with dynamic partial order reduction (DPOR)
enabled. To solve the inefficiency of stateless runtime model checking,
this paper makes two related contributions. The first contribution is a
novel and conservative light-weight method for storing abstract states at
runtime to help avoid redundant searches. The second contribution is a
stateful dynamic partial order reduction algorithm (SDPOR) that avoids
a potential unsoundness when DPOR is naively applied in the context of
stateful search. Our stateful runtime model checking approach combines
light-weight state recording with SDPOR, and strikes a good balance
between state recording overheads, on one hand, and the elimination of
redundant searches, on the other hand. Our experiments confirm the ef-
fectiveness of our approach on several multithreaded benchmarks in C,
including some practical programs.

1 Introduction

Despite all the advances in developing new concurrency abstractions, explicit
thread programming using thread libraries remains one of the most practical
ways of realizing concurrent programs that take advantage of multiple cores.
Many high level concurrency abstractions (e.g., software transaction memories)
also require the use of threads for their implementation. Unfortunately, it is not
easy to write bug-free thread programs [1]. In this paper, we focus on the efficient
checking of a given multithreaded program for safety violations over all possible
interleavings on specific inputs.

Runtime model checking [2,3] is a promising method for bug detection. As
model building, extraction, and model maintenance are expensive to carry out
for thread programs written in practice, we believe in the importance of de-
veloping efficient runtime checking methods, as pioneered in [2]. However, even
when running under specific inputs, the number of interleavings of a concurrent
program can grow astronomically due to their internal concurrency.

Much of the interleaving explosion that occurs in practice during stateless
runtime model checking can be attributed to redundant searches from already
� Supported in part by NSF award CNS00509379, Microsoft HPC Institute Program,

and SRC Contract 2005-TJ-1318.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 288–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Stateful Dynamic Partial Order Reduction 289

const int N = 64;
int d = 0;

thread1: thread2:

local int i = 0; local int j = 0;
L0: while (i < N){ M0: while (j < N){
L1: atomic{ M1: atomic{

d = d + i; M2: d = d - j;
assert(d % 5 != 4) assert(d % 5 != 4);

} }
L2: i = i + 5; M4: j = j + 2;
L3: } M5: }

Fig. 1. A simple example for illustrating the idea

visited states. The example in Figure 1 illustrates this problem. This program has
two threads that, in their own atomic blocks that are nested within loops, write
to a shared variable d. Stateless search methods cannot handle this example even
with the help of dynamic partial order reduction (DPOR) [4]. This is because: (i)
the number of interleavings grows exponentially with respect to the number of
loop iterations; (ii) working under stateless DPOR, at any reached state where
both threads are enabled, there exists no non-trivial persistent set.

Consequently, with stateless search, many states of this program are re-visited
multiple times via different interleavings. For example, given thread1 at L1 and
thread2 at M1, whether thread1 executing L1,L2 followed by thread2 executing
M1,M2, or vice versa, the program reaches the same state. Figure 2 illustrates
this, where T1 represents thread1 and T2 represents thread2 (Note: The dotted
states are the intermediate states attained after executing the visible operation of
a transition;this detail illustrates a convention introduced in Section 2.) Failing
to detect visited states makes the stateless search methods repeatedly explore
visited state spaces, which results in very low efficiency.

S2

3S

S4S0

S7S5
S6

S1

T1: d=d+i T2: j=j+2

T2: d=d-jT1: i=i+5

T1: d=d+i

T1: i=i+5T2: d=d-j

T2: j=j+2

Fig. 2. Two different executions of the program in Figure 1 lead to the same state

While one straightforward solution that avoids redundant searches involves
the use of visited states maintained in a hash table, this method, however, is
complicated owing to the difficulty of capturing the states of realistic multi-
threaded program at runtime. This is especially true for programs written in
program languages such as C/C++. Although there have been model checkers
such as CMC [5] and Java PathFinder [6] that have attempted such program

290 Y. Yang et al.

state capture, these approaches are quite heavy-weight. For example, if we take
CMC’s approach, we need to capture the state of the kernel space plus the
user space. Alternately, if we follow Java PathFinder’s approach, we will have
to build a virtual machine for C/C++ programs. Is there a light-weight ap-
proach to recording the states of concurrent programs at runtime? If we have
such an approach, how do we combine it with partial order reduction techniques
soundly? In this paper, we solve these problems in the context of terminating
multithreaded programs. We make the following contributions:

• We propose a novel light-weight scheme for capturing the local states of
threads. We observe that while capturing the entire state of a realistic pro-
gram at runtime is difficult and expensive, capturing the changes between
two successive local states of a thread can be easy and inexpensive. Based on
this observation, we abstract local states of threads with IDs, and try to dis-
cover the same local state of a thread among different executions by tracking
the changes (i.e., “deltas”) between successive local states of threads. While
an actual total system state of a thread program with N threads would be
a tuple (g, (l1, . . . , lN), (p1, . . . , pN)) where g is the global state, lk are the
actual thread local states and pk are the actual thread PCs, an abstract state
would be (g, (i1, . . . , iN), (p1, . . . , pN)) where ik are IDs we assign for thread
local states. These IDs are computed in a conservative way based on the
sequence of deltas that each thread undergoes, as explained in Section 3.

• We present a stateful dynamic partial order reduction (SDPOR) algorithm,
which combines our light-weight runtime state capturing approach with dy-
namic partial order reduction. By introducing states in dynamic partial order
reduction, an obvious soundness problem is not updating the backtrack set
along a new path that revisits a state. To solve this problem efficiently, we
dynamically construct a visible operation dependency graph while performing
the search. When a visited state is encountered, we compute the summary
of the visited sub-state-space using the visible operation dependency graph.
With the summary, we conservatively update the backtrack sets of states
and guarantee the soundness of our approach.

• We have implemented SDPOR within our runtime model checker Inspect [7],
and evaluated our approach on a set of multithreaded C benchmarks. The ex-
periments show that SDPOR is much more effective than the stateless DPOR.

The rest of the paper is organized as follows. We introduce the background
definitions in Section 2. In Section 3, we describe how local states can be captured
in a light-weight and conservative manner. Section 4 presents how the DPOR
algorithm can be adapted, with the stateful search. Sections 5 and 6 then present
the implementation details and the experimental results. An the end, we discuss
related work and conclude the paper.

2 Background Definitions

In this section, we define the notations we employ in the rest of the paper,
following the style of [4]. We consider a terminating multithreaded program

Efficient Stateful Dynamic Partial Order Reduction 291

with a fixed number of sequential threads as a state transition system. We use
T id = {1, . . . , n} to denote the set of thread identities. Threads communicate
with each other via global objects which are visible to all threads. The operations
on global objects are called visible operations, while thread local variable updates
and PC updates are invisible operations. The total system state (S), the program
counters of the threads (PCs), and the local states of threads (Locals) are now
defined:

S ⊆ Global × Locals× PCs
PCs = T id→ PC

Locals = T id→ Local

Here, Global is the state of global objects, Local the local state of any thread,
and PC the program counter of any thread. For s ∈ S, we use g(s) ∈ Global to
denote the state of global objects in s, l(s) ∈ Locals to denote the local state
component, and lτ (s) ∈ Locals(τ) to denote the local state of thread τ in s. For
ls ∈ Locals, we write ls[h := l] to denote the map that is identical to ls except
that it maps the thread h to the local state l.

A transition t : S → S advances the program from one state to a subsequent
state. More specifically, it starts with one visible operation, followed by a finite
sequence of zero or more invisible operations of the same thread, and ends just
before the next visible operation of the same thread. It is possible for a transition
t to appear in the execute trace of a multithreaded program multiple times.

We can view a transition t as a composition of the global transition tg and the
local transition tl. That is, t = tl ◦ tg where tl, tg ∈ S → S. Here, tg corresponds
to the visible operation that the transition t starts with. It updates the state of
global objects and the program counter of the thread. tl corresponds to the finite
sequence of invisible operations that follows tg. It can only affect the local state
and the program counter of the thread. For instance, in Figure 2, T1:d=d+i;
i=i+5; is a transition. It starts with a visible operation T1: d=d+i, which is
an atomic operation on updating the global object d. T1:i=i+5 is the invisible
operation that follows T1: d=d+i.

Let T denote the set of all transitions of a multithreaded program. A transition
t ∈ T is enabled in a state s if t(s) is defined. Two transitions t and t′ are
independent iff they can neither disable nor enable each other, and swapping
their order of execution does not change the combined effect [4]. t and t′ are
dependent if they are not independent with each other. We say a transition t
may be co-enabled with a transition t′ if there may exist some state s such that
both t and t′ are enabled in s.

If a transition t is enabled in a state s and t(s) = s′, we use s
t→ s′ to mean

that s′ is the successor of s by executing transition t. We use tid(t) to denote
the identity of the thread that executes t. Obviously we have tid(t) ∈ T id.

The behavior of a multithreaded program P is given by a transition system
M = (S, s0, Γ), where s0 is the initial state, and Γ ⊆ S × S is the transition
relation. (s, s′) ∈ Γ iff ∃t ∈ T : s

t→ s′.

292 Y. Yang et al.

3 Capturing Local States of Threads

Although the local states of threads are not easy to capture precisely at runtime,
we observe that in many cases, the changes δ between successive local states are
easy to capture. For example, due to the correlations among global objects [8],
it is commonly the case that there exist sequences of transitions in which each
transition has only the visible operation component, with the invisible operation
component being absent. In this case, the local states of threads do not change.
It is also common that the changes of local states only involve several local
objects and are easy to capture. As an example, in the program of Figure 1, the
local state change of thread1 between two successive executions of the atomic
statement labeled L1 only involves the local object i. Likewise, the local state
change of thread2 between two successive executions of the atomic block at M1
only involves the local object j. This motivates us to capture the local states of
threads by tracking the changes among local states.

We now detail our algorithm for capturing local states of threads at runtime,
in the context of a depth first search of the state space of the threads. The key
idea of the algorithm is to represent each local state of a thread with an abstract
ID, and to link these IDs by tracking changes between successive local states
of threads. This scheme helps conservatively determine whether local states of
threads are repeating across different executions.

Let LocalId denote the set of local state IDs (natural numbers). We define
the abstract state of a multithreaded program formally as follows:

Sa ⊆ Global× Localsa × PCs
Localsa = T id→ LocalId
LocalId ⊂ N

With the local state IDs, a multithreaded program can be represented as
a transition system Ma = (Sa, s0a , Γa), where s0a is the initial state of the
program, and Γa ⊆ Sa × Sa is the transition relation. Note that because of our
conservative state maintenance scheme which we present later in this section,
there could be more than one abstract state associated with a real state.

Let sa be an abstract state in Sa. When the context is clear, we still use g(sa) ∈
Global to denote the global state of sa, and use ls(sa) ∈ Localsa to denote the
local states identities. We use lidτ (sa) ∈ LocalId to denote the assigned local
state identity of thread τ . For lsa ∈ Localsa, we write lsa[τ := x] to denote that
the map that is identical to lsa except that it maps the thread τ to the local
state identity x.

As the state of global objects are in general easy to capture, we do not abstract
the states of global objects. Let sa ∈ Sa be an abstract state and s be its
corresponding state in S. We have g(sa) = g(s). Similarly, we also have sa.PCs =
s.PCs.

Let s, s′ ∈ S be two states, and t be a transition such that s
t→ s′. Let

τ = tid(t). We define the changes of the local state of thread τ between s and s′

as δτ = lτ (s′)\ lτ (s). We use δε to represent that the local state does not change
for a thread. That is, for the thread τ in the above, lτ (s′) = lτ (s). Also, we write

Efficient Stateful Dynamic Partial Order Reduction 293

δ⊥ to denote that the local state changes are unknown. δ⊥ is used when it is
hard to capture the local state changes, e.g. when the transition tl involves calls
to library routines, etc. We use Δ to denote the set of all possible local state
changes (δs) for all threads in the program.

In order to detect that the same local state of thread is appearing in different
executions of the multithreaded program, we maintain a local state hash table
for each thread of the program. The local state hash table records the IDs of the
local states that have been visited, as well as the changes between two successive
local states. In more detail, for each thread τ , we have a local state hash table Lτ

to store the IDs of the visited local states of τ . Lτ : LocalId×Δ→ LocalId is a
mapping from a local state IDs plus the change to a local state, to a potentially
new local state ID. However, if Lτ already contains the domain point, then the
local state ID already in the hash table is returned. We use L to denote the set
of local state hash tables for all threads.

Our basic search algorithm with abstract state recording is presented in Fig-
ures 3 and 4. The final SDPOR algorithm in Section 4 will build on this algo-
rithm. Figure 3 shows Dfs, a recursive procedure for depth-first search of the
state space. Dfs calls NextLocal of Figure 4 to compute the local state IDs
of a thread. The main data structures used are:

– A hash table H to store all program states s ∈ Sa that have already been
visited during the search.

– For each thread τ , we have a local state hash table Lτ to store the identities
of the visited local states of τ .

Dfs of Figure 3 has four parameters: the abstract state hash table H , the local
state hash tables L, the current state s, and finally sa, which is the abstract state
of s. Starting from the initial state, Dfs recursively explores the successor states
of all states encountered during the search, provided that the correspondent
abstract state is not in the hash table. For each visited state, Dfs stores the
correspondent abstract state in the hash table H . Each time we reach a state s′

by executing a transition t which is enabled in a state s, we will compute the
abstract state of s′ (line 7-9 of Figure 3), and recursively call Dfs to explore the
next level of the state space.

Figure 4 shows the algorithm for computing the local state identity of a thread.
In the procedure NextLocal, we consider four possible cases:

– If the local state change is difficult to capture precisely, we simply return a
new local state ID x.

– If the local state does not change (i.e., δτ = δε), the same ID is returned.
– If the hash table Lτ already has an entry for (i, δτ) → y, then we return y

as the ID.
– Otherwise, we return a new local state ID x, and at the same time add an

entry 〈(i, δτ) → x〉 to Lτ .

294 Y. Yang et al.

1: Initially: H is empty; ∀Lτ ∈ L : Lτ is empty; Dfs(H , L, s0, s0a);

2: Dfs(H , L, s, sa) {
3: if (sa ∈ H) return;
4: enter sa in H ;
5: for each transition t that is enabled in s {
6: let s′ ∈ S such that s

t→ s′;
7: let τ = tid(t), δτ = lτ (s′) \ lτ (s);
8: let x = NextLocal(Lτ , lidτ (sa), δτ);
9: let s′

a ∈ Sa s.t. g(s′
a) = g(s′) ∧ ls(s′

a) = ls(sa)[τ := x] ∧ s′
a.PCs = s′.PCs;

10: Dfs(H , L, s′, s′
a);

11: }
12: }

Fig. 3. Depth-first search with a light-weight state capturing scheme

1: NextLocal(Lτ , i, δτ) {
2: let x ∈ LocalId be a unique new local state identity;
3: if (δτ = δ⊥) return x;
4: if (δτ = δε) return i;
5: if (∃y : 〈(i, δτ) → y〉 ∈ Lτ) return y;
6: add 〈(i, δτ) → x〉 to Lτ ;
7: return x;
8: }

Fig. 4. Computing the local state identity of a thread

Now with Dfs and NextLocal, we have the following theorem:

Theorem 1. Let M = (S, s0, Γ) be a multithreaded program. In a depth first
search on S following the algorithm of Figure 3, let s, s′ ∈ S be states that can
be reached from s0, and let sa, s′a ∈ Sa be the abstract states corresponding to s
and s′. Then ∀τ ∈ T id : lidτ (sa) = lidτ (s′a) =⇒ lτ (s) = lτ (s′). �
The detailed proof is in the appendix. Theorem 1 states that to detect the visited
states at runtime, instead of capturing the local states of threads in detail, we
can conservatively infer the equality of local states using the local state changes
δ. In practice, capturing δ is usually much easier than capturing the whole local
state. Therefore, the task of explicitly capturing states at runtime can be greatly
simplified. In the next section, we show how to combine our approach of state
capturing with dynamic partial order reduction.

4 Stateful Dynamic Partial Order Reduction

4.1 Background

Dynamic partial order reduction [4] has been shown as an effective reduction
technique in stateless search. In DPOR, given a state s, the persistent set [9]

Efficient Stateful Dynamic Partial Order Reduction 295

of s is not computed immediately after reaching s. Instead, DPOR explores the
states that can be reached from s using depth-first search, and adds backtrack
information into the backtrack set of s while exploring the sub-space that is
reachable from s.

In more detail, let ti be a transition that is enabled at state s. Suppose the
model checker first selects ti to execute at s. Let tj be a transition which can be
enabled with a depth first search (in one or more steps) from s by executing ti.
Then before tj is executed, DPOR will check whether tj and ti are dependent
and can be enabled concurrently, i.e. co-enabled. If so, tid(tj) or the id of the
thread which tj is dependent on will be added to the backtrack set of s if a
transition of tid(tj) is enabled at s. Later, in the process of backtracking, if the
state s is found with non-empty backtrack set, DPOR will select one transition
t which is enabled at s and tid(t) is in the backtrack set of s, and explore a new
branch of the state space by executing t from s; at the same time, tid(t) will be
removed from the backtrack set of s.

For convenience, we use the following notations to represent the notions used
in DPOR:

– s.enabled denotes the set of transitions that are enabled at s. We say a thread
τ is enabled at s if ∃t ∈ s.enabled : tid(t) = τ .

– s.backtrack refers to the backtrack set of state s, i.e. the set of threads whose
transitions are enabled at s but have not been executed, s.backtrack ⊆ T id.

– s.done denotes the set of threads whose transitions are enabled at s and have
been executed from s, s.done ⊆ T id.

As DPOR is a stateless depth first search, it also suffers from the redundant
exploration of the state space as described in Section 1. In the rest of this section,
we show how to adapt dynamic partial order reduction in the context of stateful
search, and how to combine the state capturing scheme of Section 3 with the
stateful dynamic partial order reduction.

4.2 Stateful DPOR

The Problem: In a depth first search with DPOR, it seems that if visited states
can be recognized, DPOR can simply stop the search at the visited states and
start backtracking. However, it is not that simple because the transitions to be
executed after the visited states may update the backtrack sets of the states in
the search stack. Simple backtracking may result in unsoundness. For example,
suppose we have two different executions

S1 = s0
t0−→ s1

t1−→ . . .
tu−1−→ su . . .

S2 = s0
t′
0−→ s′1

t′
1−→ . . .

t′
v−1−→ s′v . . .

of a program starting from the same state s0, and s′v is a visited state, s′v = su,
u, v ≥ 0 (a fact also noted in [10]). Also, suppose that S2 is explored after S1 in
the depth first search with DPOR. Now, for every transition t which is executed

296 Y. Yang et al.

after s′v, the backtrack sets of states s0, s
′
1, . . . , s

′
v of S2 may have to be updated.

As a result, if we simply stop exploring the state space after s′v, we may miss
exploring a subset of the state space, i.e., this näıve approach is not sound.

Initial Solution: A straightforward way to fix this problem is that when a
visited state is encountered, for each state s in the search stack, we update the
backtrack set as follows – for all t ∈ s.enabled where tid(t) /∈ s.done, add tid(t)
into s.backtrack. This solves the problem of missing potential backtrack sets.
However, it may also have the side effect of introducing too many unnecessary
backtrack points which would not be introduced in the stateless DPOR. 1 This
side effect may put significant overhead on the stateful approach and make the
stateful DPOR run slower than the stateless one. Our initial experiments con-
firmed this conjecture.

Visible Operation Dependency Graph: To avoid unsoundness we employ
an efficient mechanism called visible operation dependency graph. Let sv be a
visited state encountered in the stateful DPOR. As only the visible operations
of transitions determine whether two transitions are dependent or not, our ap-
proach is to compute a summary for the state space the element of which can be
reachable from sv. This summary captures all the visible operations that might
be executed from sv in one or more steps. We can use this summary to update
the backtrack sets of the states that are in the search stack.

Obviously, computing such a summary for every state is very heavy-weight.
However, we observe that with multithreading, the programs are usually designed
in such a way that each thread is assigned some specific tasks to get the most
benefit out of parallelism. The number of resources that require mutual exclusive
accesses, and the number of conditions that threads need to be synchronized are
limited, and usually small in number. This implies that while the number of
states of a multithreaded program can be large, the number of visible operations
that each thread may execute is limited.

For instance, for the program of Figure 1, although the number of states can
be large, the only visible operation that thread1 and thread2 may execute is
updating the global object d.

Based on this observation, instead of trying to maintain a summary for each
state and keep the summaries updated, we compute the summary dynamically
only when a visited state is encountered by looking up the visible operation de-
pendency graph which is constructed dynamically during the search.

In more detail, let M = (S, s0, Γ) be a multithreaded program. Let T be the
transition set of M . A visible operation dependency graph G = 〈V, E〉 for M is
a directed graph which captures the happen-before relation of visible operations
for the traversed state space. Every node v ∈ V of G is a visible operation. That

is, ∀v ∈ V : ∃t ∈ T : tg = v. For each transition sequence s1
t→ s2

t′
→ s3 we

encounter during the search, we add a directed edge (tg, t′g) into the graph.

1 The solution in [10] was this, but the method was experimented only in the context
of a custom-built model checker on very small MPI program examples.

Efficient Stateful Dynamic Partial Order Reduction 297

In a depth-first search, when a visited state s is encountered, all the states that
are reachable from s must have been visited because of the depth first search.
Hence, all the visible operations that may be executed in states reachable from
s must have been executed. Therefore, we can traverse the visible operation
dependency graph to find out all the visible operations that may be executed
from some transition in s.enabled, and use this as a summary to update the
backtrack sets of the states which are in the search stack. As the size of the
graph is proportional to the number of visible operations that a multithreaded
program may execute, this is a light-weight method for computing summaries of
the visited states.

SDPOR: Figure 5 presents our stateful dynamic partial order reduction al-
gorithm (SDPOR). The procedure Sdpor takes three parameters: the search
stack S, the state hash table H , and the visible operation dependency graph
G. Similar to DPOR, given a multithreaded program P , SDPOR first explores
an arbitrary interleaving of the program, and thereafter, continues explore al-
ternative interleavings until all relevant interleavings are explored, i.e., when no
backtrack points are in the search stack. The differences between SDPOR and
DPOR are:

– SDPOR uses a hash table H to record the visited states (line 9 of Figure 5).
When a visited state is encountered, SDPOR conservatively updates the
backtrack sets for states in the search stack S, and start backtracking (line
5-7 of Figure 5).

– SDPOR uses a visible operation dependency graph G to dynamically learn
the happen-before relation of visible operations during the depth-first search
(line 19 of Figure 5). G is used to compute the state summary U when a
visited state is encountered (line 5 of Figure 5).

SDPOR uses UpdateBacktrackSets of Figure 6 to update the backtrack
sets for states in the search stack. UpdateBacktrackSets is the same as that
in the stateless DPOR. We present it here for completeness.

Theorem 2. Let M = (S, s0, Γ) be a multithreaded program. For every execu-
tion of a transition s

t→ s′ of M , if it is explored by the stateless DPOR, it must
be explored by Sdpor. �
The soundness of Sdpor is guaranteed by Theorem 2. The detailed proof is
given in the appendix. This theorem shows that given a multithreaded program,
the set of states visited by Sdpor is a superset of the states visited by DPOR.
This means that Sdpor is a conservative approach.

Note that DPOR may re-explore the same state space many times, while
SDPOR will, whenever abstract states are found in the hash-table, avoid all those
re-visits. Therefore, the bag of DPOR visited states usually has size far higher
than the bag of states that SDPOR visits. This is the reason that Sdpor can be
more efficient than DPOR in checking multithreaded programs. The experiments
to be shown in Section 6 confirm that comparing with DPOR, Sdpor is more
efficient in checking realistic multithreaded programs.

298 Y. Yang et al.

1: Initially: S.push(s0); H is empty; G is empty;

2: Sdpor(S, H , G) {
3: s ← S.top;
4: if (s ∈ H) {
5: let U = {v | ∃t ∈ s.enabled, v is reachable in G from the node tg};
6: for each t ∈ U , UpdateBacktrackSets(S, t);
7: return;
8: }
9: add s into H ;

10: for each t ∈ s.enabled, UpdateBacktrackSets(S, t);
11: if (∃ thread τ , ∃t ∈ s.enabled, tid(t) = τ){
12: s.backtrack ← {τ};
13: s.done ← ∅;
14: while (∃h ∈ s.backtrack \ s.done) {
15: s.backtrack ← s.backtrack \ {h};
16: s.done ← s.done ∪ {h};
17: let t ∈ s.enabled, tid(t) = h, and let s′ = next(s, t);
18: S.push(s′);

19: if ∃sx ∈ S s.t. sx
tx→ s

t→ s′, add a directed edge (txg , tg) to G
20: Sdpor(S, H, G);
21: S.pop();
22: }
23: }
24: }

Fig. 5. Stateful dynamic partial order reduction (SDPOR)

1: UpdateBacktrackSets(S, t) {
2: let T be the sequence of transitions that are executed from the initial state of

the program, following the sequence of states in S;
3: let td be the latest transition in T that is dependent and may be co-enabled

with t;
4: if (td �= null){
5: let sd be the state in S from which td is executed;
6: let E be {q ∈ sd.enabled | tid(q) = tid(t), or q in T , q was after td, and there is

a happens-before relation for (q, t); }
7: if (E �= ∅)
8: choose any q in E, add tid(q) to sd.backtrack;
9: else

10: sd.backtrack ← sd.backtrack ∪ {tid(q) | q ∈ sd.enabled};
11: }
12: }

Fig. 6. Updating the backtrack sets for states in the search stack

Efficient Stateful Dynamic Partial Order Reduction 299

4.3 Efficient SDPOR

The algorithm of Figure 5 assumes that the model checker is capable of capturing
the program states precisely. Here we present the practical algorithm which
combines Sdpor of Figure 5 with the light-weight state capturing scheme that
is presented in Section 3. Figure 7 shows the algorithm. Here the procedure
Sdpor takes four parameters – although the parameter S is still the search
stack, the element of the stack is a pair (s, sa) such that s ∈ S, sa ∈ Sa, and sa

is the abstract state of s. The parameter L is the set of local state hash tables.
The parameter H , G are the same as in Figure 5.

1: Initially: S.push(s0); H is empty; ∀Lτ ∈ L : Lτ is empty; G is empty;

2: Sdpor(S, H , L, G) {
3: 〈s, sa〉 ← S.top;
4: if (sa ∈ H) {
5: let U = {v | ∃t ∈ s.enabled, v is reachable in G from the node tg};
6: for each t ∈ U , UpdateBacktrackSets(S, t);
7: return;
8: }
9: add sa into H ;

10: for each t ∈ s.enabled, UpdateBacktrackSets(S, t);
11: if (∃ thread τ , ∃t ∈ s.enabled, tid(t) = τ){
12: s.backtrack ← {τ};
13: s.done ← ∅;
14: while (∃h ∈ s.backtrack \ s.done) {
15: s.backtrack ← s.backtrack \ {h};
16: s.done ← s.done ∪ {h};
17: let t ∈ s.enabled, tid(t) = h, and let s′ = next(s, t);
18: let δh = lh(s′) \ lh(s), and x = NextLocal(Lh, lidh(sa), δh);
19: let s′

a ∈ Sa s.t. g(s′
a) = g(s′) ∧ ls(s′

a) = ls(sa)[τ := x] ∧ s′
a.PCs = s′.PCs;

20: S.push(〈s′, s′
a〉);

21: if ∃sx ∈ S s.t. sx
tx→ s

t→ s′, add a directed edge (txg , tg) to G
22: Sdpor(S, H, L, G);
23: S.pop();
24: }
25: }
26: }

Fig. 7. The combination of SDPOR shown in Figure 5 with the light-weight state
capturing scheme which is presented in Section 3

Comparing with Sdpor in Figure 5, in this combined algorithm, line 18-19
are the new statements for computing the abstract states, line 3 and line 20 are
modified to adapt the changes of the search stack, and line 22 is changed to
adapt the local state hash tables. The rest of the algorithm is the same as in
Figure 5.

300 Y. Yang et al.

5 Implementation

We implemented the algorithm of Figure 7 in the infrastructure of the runtime
model checker Inspect [7,11] . Inspect can instrument a multithreaded C pro-
gram with code to intercept the visible operations, compile the instrumented
program along with a stub library into an executable, and uses a centralized
monitor to systematically explore interleavings of the program by concretely
executing the program.

Inspect uses escape analysis [12] to reveal potential visible operations in
a multithreaded program. Building upon this approach, we implemented an
intra-procedural forward data-flow analysis to determine the local state changes
between successive visible operations. For any transition t, we treat δt as δ⊥
when: (i) tg of t is the first visible operation in the procedure, or (ii) there are
function calls or updates of pointers between the previous visible operation and
tg. Otherwise, we compute δt by capturing the changes of the local variables.

In [11], we described how automated instrumentation is done for stateless
runtime checking. To capture the local state changes of threads, we instrument
extra code into the program under test to inform the scheduler the local state
changes.

6 Experimental Results

We performed experiments on a set of multithreaded benchmarks: example1 is
the program shown in Figure 1, sharedArray is a benchmark from [13]. It has two
threads that iteratively write to different elements of a shared array. bbuf is an
implementation of a bounded buffer with concurrent producers and consumers.
bzip2smp [14] and pfscan [15] are two real multithreaded applications. bzip2smp
is a multithreaded compression program that uses multiple threads to speed
up the compression of a file. pfscan is a multithreaded file scanner that uses
multiple threads to search in parallel through directories. bzip2smp contains
6.4k lines of C code, and pfscan has 1k lines of C code. We used a 1MB text
file as the input to bzip2smp, and a directory with two files as the input to
pfscan.

Table 1 shows the experimental results using stateless DPOR and our stateful
approach. All the experiments were performed on a PC with an Intel quad-core
CPU of 2.4GHz and 2GB of memory. We use “-” to denote that the program
cannot be completely checked within 24 hours (86400 seconds).

We compared SDPOR with DPOR on the number of executions (or runs)
they require to check a program, the number of transitions explored, and the
checking time. Note that for SDPOR, the number of transitions being explored
minus the number of “re-visited” states is the number of states encountered in
the search. From the experimental results, it is clear that our stateful DPOR
approach is more effective than the stateless DPOR, in reducing both the number
of transitions to be explored and the checking time.

Efficient Stateful Dynamic Partial Order Reduction 301

Table 1. Experimental results on the comparison between DPOR and SDPOR

Benchmarks Threads DPOR SDPOR
runs transitions time(s) runs transitions re-visited time(s)

example1 2 - - - 35 2,084 12 1.41
sharedArray 2 - - - 98 18,557 33 5.70

bbuf 4 47,096 1,058,962 938.27 16,246 349,717 669 344.88
bzip2smp 4 - - - 4,598 26,442 4460 1311.15
bzip2smp 5 - - - 18,709 92,276 18,278 9456.34
bzip2smp 6 - - - 51,400 236,863 50,401 25659.38
pfscan 3 84 1,157 0.527 71 967 2 0.485
pfscan 4 13,617 189,218 240.74 3,168 40,395 334 57.43
pfscan 5 - - - 272,873 3,402,486 39,008 5328.84

7 Related Work

There has been substantial work on stateful model checking. Model checkers
such as SPIN [16] and Bogor [17] have been very successful in revealing bugs
and proving the correctness of systems. However, it is difficult for classic model
checkers to check realistic multithreaded programs, which often heavily use li-
brary routines and have sophisticated memory manipulation operations. The
advantage of our approach is able to directly examine the programs and avoid
the modeling overhead (and potential consistency issues).

Musuvathi et al. [5] developed CMC, which is a runtime model checker that
can precisely capture the states of a concurrent program by snapshoting the ker-
nel space plus the user space of the program. In our work, we do not capture the
whole state of a multithreaded program. Instead, we abstract the local states of
threads as identities, and try to recognize the same states in different executions
by tracking the local state changes. Compared with CMC, our approach is more
light-weight in capturing states at runtime.

Gueta et al. [13] proposed Cartesian partial order reduction, which reduces the
search space by delaying unnecessary context switches using Cartesian vectors.
Cartesian partial order reduction performs stateful search, and can deal with
cyclic state space. However, their approach assumed that the model checker
is capable of capturing the states precisely, and did not address the problem
of practical state capturing at runtime. We present a light-weight method for
capturing the states of concurrent programs at runtime, and show how to adapt
the stateful search into dynamic partial order reduction.

Yi et al. [18] proposed another stateful dynamic partial order reduction method
based on the summary of interleavings. [18] also assumed that the model checker
is able to precisely capture the states, and did not address the problem of state
capturing at runtime. Their definition of summary for interleavings is a set of
happen-before transition mappings. In their method, each state is associated with
a summary of interleaving information, which could be very expensive to store
and to keep updated. When a visited state is encountered, our SDPOR computes
a summary for the states that can be reached from the visited state in one or more

302 Y. Yang et al.

steps. Different from their work, we use a visible operation dependency graph to
dynamically compute the summary when a visited state is encountered. As a re-
sult, in our approach, the state summary computation is more light-weight.

8 Conclusion

To overcome the problem of capturing local states of multithreaded C programs
at runtime, we propose a novel light-weight state abstraction scheme to conser-
vatively capture local states, We also propose a stateful dynamic partial order
reduction algorithm, and show how to combine it with our light-weight state
capturing scheme. Compared with the traditional stateless DPOR approach, our
approach is able to detect commutativity of transitions in different executions
of multithreaded programs at runtime, and avoid exploring redundant interleav-
ings. The experiments show that our approach is more efficient than stateless
DPOR in checking realistic programs.

References

1. Lee, E.A.: The problem with threads, vol. 39, pp. 33–42. IEEE Computer Society
Press, Los Alamitos (2006)

2. Godefroid, P.: Model Checking for Programming Languages using Verisoft. In:
POPL, pp. 174–186 (1997)

3. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) PLDI, pp. 446–
455. ACM, New York (2007)

4. Flanagan, C., Godefroid, P.: Dynamic Partial-order Reduction for Model Check-
ing Software. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
110–121. ACM, New York (2005)

5. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: A Prag-
matic Approach to Model Checking Real Code. In: OSDI (2002)

6. Visser, W., Havelund, K., Brat, G.P., Park, S.: Model checking programs. In: ASE,
pp. 3–12 (2000)

7. http://www.cs.utah.edu/∼yuyang/inspect
8. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: context-sensitive correlation anal-

ysis for race detection. In: PLDI, pp. 320–331. ACM Press, New York (2006)
9. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:

An Approach to the State-Explosion Problem. Springer, Heidelberg (1996)
10. Palmer, R.L.: Formal Analysis for MPI-based High Performance Computing Soft-

ware, Ph.D. Dissertation, University of Utah (2007)
11. Yang, Y., Chen, X., Gopalakrishnan, G.: UUCS-08-004:Inspect: A Runtime Model

Checker for Multithreaded C Programs. Technical report (2008)
12. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs.

In: PPoPP, pp. 12–23. ACM Press, New York (2001)
13. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.

In: Bosnacki, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)

14. http://bzip2smp.sourceforge.net/

http://www.cs.utah.edu/~yuyang/inspect
http://bzip2smp.sourceforge.net/

Efficient Stateful Dynamic Partial Order Reduction 303

15. http://freshmeat.net/projects/pfscan
16. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley, Reading (2004)
17. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software

model checking framework. In: ESEC / SIGSOFT FSE, pp. 267–276 (2003)
18. Yi, X., Wang, J., Yang, X.: Stateful Dynamic Partial-Order Reduction. In: Liu, Z.,

He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 149–167. Springer,Heidelberg (2006)

Appendix

Theorem 1. Let M = (S, s0, Γ) be a multithreaded program. In a depth first
search on S following the algorithm of Figure 3, let s, s′ ∈ S be states that can
be reached from s0, and let sa, s′a ∈ Sa be the abstract states of s and s′. Then
∀τ ∈ T id : lidτ (sa) = lidτ (s′a) =⇒ lτ (s) = lτ (s′).

Proof. In a depth first search on S following the algorithm of Figure 3, let n be the
number of times that NextLocal returns to Dfs from line 4 or line 5 of Figure 4.
That is, n is the number of times that NextLocal is invoked with either δτ = δε

or ∃y.〈(i, δτ) → y〉 ∈ Lτ . We now prove the theorem by induction on n.

– (Base case) n = 0: Following NextLocal, if n = 0, all calls to NextLocal

must return from either line 3 or line 7. That is, NextLocal has never been
invoked with δτ = δε or ∃y.〈(i, δτ) → y〉 ∈ Lτ . Hence, following the algorithm
of Figure 4, every local state that has been visited must be assigned a unique
id. Therefore, lidτ (sa) = lidτ (s′a) =⇒ lτ (s) = lτ (s′) holds in this situation.

– (Induction hypothesis) Let k ≥ 0. For all n, n ≤ k, Theorem 1 holds.
– (Induction step) Let n = k + 1. Let s′ ∈ S be the state and τ ∈ T id

be the thread such that by invoking NextLocal(Lτ , lidτ (s′), δτ) at line 8,
n changes from k to k + 1. Consider the situation that Dfs has finished
executing line 8 of Figure 3, but has not started executing line 9. Let s ∈ S

be a state and t be a transition such that s
t→ s′ and τ = tid(t). There are

two cases with respect to s′:
• If δτ = δε, according to line 7 of Dfs, we have lτ (s) = lτ (s′), and

lidτ (sa) = lidτ (s′a). Obviously lidτ (sa) = lidτ (s′a) =⇒ lτ (s) = lτ (s′)
holds. Hence the theorem holds.

• If ∃y.〈(lidτ (sa), δτ) → y〉 ∈ Lτ : Let s1, s2 ∈ S be the two states that have
been visited and t1 be the transition such that 〈(lidτ (sa), δτ) → y〉 was
added to Lτ when Dfs explored s1

t1→ s2. Let s1a and s2a respectively be
the abstract state of s1 and s2 Obviously we have lidτ (s1a) = lidτ (sa),
lidτ (s2a) = y, and lτ (s2)\ lτ (s1) = lτ (s′)\ lτ (s). According to the induc-
tion hypothesis, lτ (s1) = lτ (s) must hold. As lτ (s2)\lτ (s1) = lτ (s′)\lτ (s),
we have lτ (s2) = lτ (s′). Hence, the theorem holds. Otherwise, it contra-
dicts the induction hypothesis.

&�

Let M = (S, s0, Γ) be a multithreaded program. Let s be a state in S. We use
Rs to denote the set of states that are reachable from s by executing one or more
transitions. Obviously we have Rs ⊆ S.

http://freshmeat.net/projects/pfscan

304 Y. Yang et al.

1: Initially: c = 0; S.push(s0); H is empty;

2: Sdpork(S, H) {
3: s ← S.top;
4: if (s ∈ H) {
5: c ← c + 1;
6: if (c ≤ k) {
7: let Tp = {tg | t can be executed from states which are reachable from s };
8: for each t ∈ Tp, UpdateBacktrackSets(S, t);
9: return;

10: }
11: }
12: add s into H ;
13: for each t ∈ s.enabled, UpdateBacktrackSets(S, t);
14: if (∃ thread τ , ∃t ∈ s.enabled, tid(t) = τ){
15: s.backtrack ← {τ};
16: s.done ← ∅;
17: while (∃h ∈ s.backtrack \ s.done) {
18: s.backtrack ← s.backtrack \ {h}, s.done ← s.done ∪ {h};
19: let t ∈ s.enabled, tid(t) = h, and let s′ = next(s, t);
20: S.push(s′);
21: Sdpork(S, H);
22: S.pop();
23: }
24: }
25: }

Fig. 8. Sdpork only stops depth-first search and backtrack immediately at the first k
revisited states

Let Sdpork be the algorithm of Figure 8. Comparing with Sdpor, the only
difference between Sdpork and Sdpor is that Sdpork takes one more parameter
k, which bounds Sdpork to return only at the first k visited states. In more
detail, Sdpork uses a global counter c to record the number of visited states
that it has encountered during the depth-first search (line 5 of Figure 8). When
a visited state sv is encountered, if c ≤ k, then Sdpork updates the backtrack
sets of states in the search stack (line 7-8 of Figure 8) and returns immediately;
otherwise, Sdpork continues exploring Rsv .

We have a class of algorithms {Sdpor0, Sdpor1, } by assigning k specific
values. LetA denote an algorithm that explores the state space of M . Let SA ⊆ S
refer to the set of states that is explored using A by starting from s0. Obviously,
we have SDPOR = SSdpor0 and SSdpor = SSdpor∞ .

To prove the correctness of Theorem 2, we first prove Lemma 1, which char-
acterize the relationship between Sdpork and Sdpork+1.

Lemma 1. Let M = (S, s0, Γ) be a multithreaded program. Let s, s′ ∈ S and
t be a transition of M such that s

t→ s′. Let k ≥ 0. If s
t→ s′ is explored by

Sdpork, it must be explored by Sdpork+1.

Efficient Stateful Dynamic Partial Order Reduction 305

Proof. Let r be the value of the global variable c when we finish checking the
state space of M using Sdpork. There are two cases with respect to r:
– If r ≤ k, obviously that the state spaces traversed by Sdpork and Sdpork+1

are identical. The lemma holds.
– If r > k, let vi be the i-th visited state Sdpork and Sdpork+1 encounter

while exploring the state space of M . Let Γ x
i ⊆ Γ be the transition relation

that has been explored by Sdporx before reaching the i-th visited states. It
is obvious that ∀i, i ≤ k + 1 : Γ k

i = Γ k+1
i holds.

Now we consider the exploration of the search space bySdpork and Sdpork+1

after they encounter vk+1. Following the algorithm of Figure 8, while encoun-
tering vk+1, Sdpork is equivalent to a stateless search that does not record
the search history, and explores Rvk+1 . However, Sdpork+1 does not explore
Rvk+1 . Before encountering vk+1, the state spaces explored by Sdpork and
Sdpork+1 are identical. Hence, the search stacks of Sdpork and Sdpork+1

are identical at the point of encountering vk+1. Let sk and sk+1 denote the
correspondent states that are respectively in the search stacks of Sdpork

and Sdpork+1. To prove the lemma, all that we need to prove is that, when
Sdpork and Sdpork+1 backtrack from svk+1 , for all pairs of states 〈sk, sk+1〉,
we have sk.backtrack ⊆ sk+1.backtrack.
This can be proved by contradiction. Suppose while backtracking from vk+1,
there exists 〈sk, sk+1〉 such that sk.backtrack ⊃ sk+1.backtrack. This im-
plies that ∃h ∈ T id : h ∈ sk.backtrack ∧ h /∈ sk+1.backtrack. As the only
difference between Sdpork and Sdpork+1 is that Sdpork explores Rvk+1

while Sdpork+1 does not, this can happen if and only if ∃s1, s2 ∈ Rvk+1 , ∃t ∈
sk+1.enabled : s1

t1→ s2 and t1 is dependent with t. However, following the al-
gorithm of Figure 8, if the execution of t1 happens before backtracking vk+1

in Sdpork, t1 ∈ Tp. Hence, if h ∈ sk.backtrack, h must be in sk+1.backtrack.
This contradicts h /∈ sk+1.backtrack. &�

Let M = (S, s0, Γ) be a multithreaded program. Let G be the transition de-
pendency graph of M . G is dynamically constructed following the algorithm of
Figure 5. Let U be the set of visible operations that is computed at line 5 of
Figure 5. Let Tp be the set of visible operations that is computed as line 7 of
Figure 8. We have the following lemma:

Lemma 2. Tp ⊆ U .

Proof: Following the algorithm of Figure 5, it is clear that while backtracking
from a state s, all transition dependency edges that can appear in Rs must have
been added to G. Therefor, we have ∀t ∈ Tp : t ∈ U . &�
Theorem 2. Let M = (S, s0, Γ) be a multithreaded program. For every execution
of a transition s

t→ s′ of M , if it is explored by the stateless DPOR, it must be
explored by Sdpor.

Proof. With Lemma 1, Lemma 2, SDPOR = SSdpor0 and SSdpor = SSdpor∞, it is clear
that the theorem holds. &�

Symbolic String Verification: An

Automata-Based Approach�

Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra

Department of Computer Science
University of California, Santa Barbara

{yuf,bultan,marco,ibarra}@cs.ucsb.edu

Abstract. We present an automata-based approach for the verification
of string operations in PHP programs based on symbolic string analysis.
String analysis is a static analysis technique that determines the values
that a string expression can take during program execution at a given
program point. This information can be used to verify that string values
are sanitized properly and to detect programming errors and security
vulnerabilities. In our string analysis approach, we encode the set of
string values that string variables can take as automata. We implement
all string functions using a symbolic automata representation (MBDD
representation from the MONA automata package) and leverage efficient
manipulations on MBDDs, e.g., determinization and minimization. Par-
ticularly, we propose a novel algorithm for language-based replacement.
Our replacement function takes three DFAs as arguments and outputs
a DFA. Finally, we apply a widening operator defined on automata to
approximate fixpoint computations. If this conservative approximation
does not include any bad patterns (specified as regular expressions), we
conclude that the program does not contain any errors or vulnerabilities.
Our experimental results demonstrate that our approach works quite well
in checking the correctness of sanitization operations in real-world PHP
applications.

1 Introduction

Unsanitized string variables are a common cause of security vulnerabilities in
Web applications. In typical interactive Web applications, user-provided input
strings are often used to query back-end databases. If the user input is not prop-
erly checked and filtered (i.e., sanitized), the input strings that contain hidden
destructive commands can be sent to back-end databases and cause damage.
Using the string analysis techniques proposed in this paper, it is possible to au-
tomatically verify that a string variable is properly sanitized at a program point,
showing that such attacks are not possible.

We present a string analysis technique that computes an over approximation
of possible values that a string expression can take at a given program point. We
use a deterministic finite automaton (DFA) to represent the set of values string
� This work is supported by NSF grants CCF-0614002 and CCF-0716095.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 306–324, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Symbolic String Verification: An Automata-Based Approach 307

expressions can take. At each program point, each string variable is associated
with a DFA. The language accepted by the DFA corresponds to the values that
the corresponding string variable can take at that program point.

The string analysis technique we present is a forward reachability computation
that uses DFA as a symbolic representation. We use the symbolic DFA repre-
sentation provided by the MONA DFA library [4], in which transition relations
of the DFA are represented as Multi-terminal Binary Decision Diagrams (MB-
DDs). We iteratively compute an over approximation of the least fixpoint that
corresponds to the reachable values of the string expressions. In each iteration,
given the current state DFAs for all the variables, we compute the next state
DFAs. We present algorithms for next state computation for string operations
such as concatenation and language-based replacement. Particularly, we present
an algorithm for the language-based replacement operation that computes the
DFA for Replace(M1, M2, M3) where M1, M2, and M3 are DFAs that accept
the set of original strings, the set of match strings, and the set of replacement
strings, respectively.

Our language-based replacement operation is essential to model various built-
in functions of PHP language that can be used to perform input validation.
These functions provide a general mechanism to scan a string for matches to a
given pattern, expressed as a regular expression, and to replace the matched text
with a replacement string. As an example of modeling these functions, consider
the following statement:
$username = ereg_replace("<script *>", "", $_GET[\"username\"]);

The expression GET["username"] returns the string entered by the user, the
ereg replace call replaces all matches of the search pattern with the empty
string, and the result is assigned to the variable username. This statement can
be modeled by our language-based replacement operation, where M1 accepts
arbitrary strings, M2 accepts the set of strings that start with <script followed
by zero or more spaces and terminated by the character >, and M3 accepts the
empty string.

We believe that we are the first to extend the MONA automata package to
analyze these complex string operations on real programs. In addition to comput-
ing the language-based replacement operation, another difficulty is implementing
these string operations without using the standard constructions based on the
ε-transitions, since the MBDD-based automata representation used by MONA
does not allow ε-transitions. We model non-determinism by extending the al-
phabet with extra bits and then project them away using the on-the-fly subset
construction algorithm provided by MONA. We apply the projection one bit at
a time, and after projecting each bit away, we use the MBDD-based automata
minimization to reduce the size of the resulting automaton.

Since DFAs can represent infinite sets of strings, the fixpoint computations
are not guaranteed to converge. To alleviate this problem, we use the automata
widening technique proposed by Bartzis and Bultan [3] to compute an over-
approximation of the least fixpoint. Briefly, we merge those states belonging to
the same equivalence class identified by certain conditions. This widening opera-
tor was originally proposed for automata representation of arithmetic constraints

308 F. Yu et al.

but the intuition behind it is applicable to any symbolic fixpoint computation
that uses automata.

We implemented the proposed string analysis technique for PHP programs.
PHP is a scripting language which is widely used in implementing interactive
Web applications. Our experiments show that the proposed symbolic analysis
technique works quite well and can be used to prove the correctness of sanitiza-
tion in real-world PHP applications.

An Example: Consider the PHP program fragment below which demonstrates
a vulnerability from a guestbook application called PBLguestbook-1.32:

1: foreach ($_POST as $name => $value) {
2: if ($name != ’process’ && $name != ’password2’) {
3: $count++;
4: $result .= "‘$name‘ = ’$value’";
5: if ($count <= $numofparts)
6: $result .= ", ";
7: }
8: }
9: $query = "UPDATE ‘pblguestbook_config‘ SET $result";
10: mysql_query($query);

This program fragment traverses the input strings entered by the user (which
are stored in the POST array) in a loop (lines 1-8) and constructs a query string
by accumulating them (by concatenating them to the result variable). This
query is then sent to the back-end database (line 10).

This program shows an example of a SQL injection vulnerability. Input strings
are concatenated in the loop at lines 1-8 to form the string used to query
the application’s database. Since no sanitization is performed, an attacker can
modify the query, for example, by injecting a parameter with value ’; DROP

DATABASE #. In this case, the SQL string sent to the database will be UPDATE

‘pblguestbook config‘ SET ‘name‘ = ’’; DROP DATABASE #’. Note that the ‘;’
character separates distinct queries and the ‘#’ character starts a comment.
Therefore, if the database allows the execution of multiple queries, it will ex-
ecute the legitimate query intended by the developer and the injected query
that drops the entire database. The vulnerability can be fixed by adding a san-
itization step on the input parameters before the query string is formed.

A properly sanitized version of this program fragment would be:

1: foreach ($_POST as $name => $value) {
1.1: $name = preg_replace("/[^a-zA-Z0-9]/", "", $name);
1.2: $value = preg_replace("/’/", "", $value);
2: if ($name != ’process’ && $name != ’password2’) {
3: $count++;
4: $result .= "‘$name‘ = ’$value’";
5: if ($count <= $numofparts)
6: $result .= ", ";
7: }
8: }

Symbolic String Verification: An Automata-Based Approach 309

9: $query = "UPDATE ‘pblguestbook_config‘ SET $result";
10: mysql_query($query);

The sanitization is achieved in lines 1.1 and 1.2 by deleting potentially prob-
lematic characters in the variables $name and $value, hence preventing the
presented SQL command injection attack. We analyzed both the vulnerable and
the sanitized versions of this program fragment using our string analysis tool.
Our string analysis tool constructed a DFA that gives an over-approximation
of the string values that the variable query can take at line 10. We wrote a
regular expression characterizing strings that can be used for SQL command
injection and converted it to a DFA. (Note that these types of attack DFAs can
be constructed once and stored in a library. They do not have to be specified
separately for each program that is being analyzed). Then, we checked if the
intersection of the language recognized by the DFA for the query variable at line
10, and the DFA characterizing the SQL command injection attack is empty.
When we applied our analysis to the vulnerable program fragment shown above,
our string analysis tool reported that the intersection is not empty, i.e., the pro-
gram fragment might be vulnerable. However, when we applied our analysis to
the sanitized version, our tool reported that the intersection is empty, proving
that the variables are properly sanitized.

It is worthwhile to note some of the challenges in analyzing the example given
above. First, in order to prove that the variables are properly sanitized, we need
to statically interpret the replacement function preg replace with reasonable
precision. Second, our fixpoint computation has to converge even though the
above program fragment contains a loop. We are able to handle both of these
challenges by 1) proposing and implementing a novel language-based replace-
ment operation and 2) using an automata widening operator. Note that, for
the sanitized program fragment, the fixpoint computation without widening will
not converge. Moreover, a naive over-approximation, that sets the values of the
variables that are updated in a loop to all possible strings, will not be a tight
enough approximation to verify the sanitized program fragment.

The rest of the paper is organized as follows. In Section 2, we describe our
symbolic string analysis algorithm. In Section 3, we describe the implementation
of the closure, concatenation and replacement operations. In Section 4, we discuss
the widening operation. In Section 5, we summarize our experiments. In Section
6, we discuss the related work, and, in Section 7, we conclude the paper.

2 Automata-Based String Analysis

Most of the string manipulation operations performed in real-world applications
can be reduced to the following four operations:

– assignment : assigns the current string value of a variable to another variable
(the assignment operator in PHP is “=”);

– concatenation: concatenates two string variables and/or constants (the con-
catenation operation in PHP is “.”);

310 F. Yu et al.

– replacement : replaces the parts of a string that match the given pattern
with the given replacement string (there are several string replacement func-
tions in PHP such as htmlspecialchars, tolower, toupper, str replace, trim,
preg replace and ereg replace, and they can all be converted to this form).

– restriction: restricts the value of a string variable based on a branch condition.

The first step of string analysis is to construct a control flow graph (CFG)
that only contains string variables and operations on string variables. We define
a CFG as a tuple (V, S, E) where V is the set of string variables, S is the set of
statements and E ⊆ S×S is the set of control flow edges. Each statement s ∈ S
could be one of the following operations: null, assign, concat, replace, restrict,
input. The null operation represents the statements that do not influence the
string variables and, hence, have been removed. We use assign to denote the
assignment of a string constant or a variable to a string variable. We use concat
to denote the assignment operations that assign the concatenation of two string
constants and/or variables to a string variable. We use replace to denote the
assignment of a string value computed by a replacement operation to a string
variable. We use restrict to denote the restriction of a string value in order to
model branch conditions. For instance, considering a branch condition v = e,
where e is a regular expression, we add restrict(v, e) at the beginning of the
truth branch and restrict(v, ē) at the beginning of the false branch where ē
indicates to restrict the string values of v to the complement set of e. A similar
idea has been discussed in [15]. Finally, we use input to denote a read operation,
where a string variable is assigned a value provided by a user.

Automata Operations: In order to implement the automata-based string anal-
ysis, we implement the following operations:

– Construct(regexp e): Returns a DFA M , L(M) = {w | w ∈ L(e)}.
– Closure(DFA M1): Returns a DFA M , L(M)={w1w2 . . . wk | k > 0, ∀i, 1 ≤

i ≤ k, wi ∈ L(M1)}.
– Concat(DFA M1, DFA M2): Returns a DFA M , L(M) = {w1w2 | w1 ∈

L(M1), w2 ∈ L(M2)}.
– Replace(DFA M1, DFA M2, DFA M3): Returns a DFA M , L(M) =
{w1c1w2c2 . . . wkckwk+1 | k > 0, w1x1w2x2 . . . wkxkwk+1 ∈ L(M1), ∀i, xi ∈
L(M2), wi does not contain any substring accepted by M2, ci ∈ L(M3)}.

– Union(DFA M1, DFA M2) : Returns a DFA M , L(M) = L(M1) ∪ L(M2).
– Intersect(DFA M1, DFA M2): Returns a DFA M, L(M) = L(M1)∩L(M2).
– Widening(DFA M1, DFA M2): Returns a DFA M, L(M) ⊇ L(M1)∪L(M2).
– EquCheck(DFA M1, DFA M2): Checks whether L(M1) = L(M2).
– EmpCheck(DFA M): Checks whether L(M) = ∅.
– Empty(): Returns a DFA which does not accept any string.
– Universal(): Returns a DFA which accepts all the strings.

String Analysis Algorithm: The string analysis algorithm, takes a CFG,
a program point, a string variable and an attack pattern as input. It computes
|V |×|S| DFAs, where the DFA (v, s) accepts the language that corresponds to all

Symbolic String Verification: An Automata-Based Approach 311

Input: (V, S, E), attackpattern, statement, variable
DFA attack := Construct(attackpattern)
DFA old[1 . . . |V |][1 . . . |S|], new[1 . . . |V |][1 . . . |S|], temp[1 . . . |V |]
for each v ∈ V , s ∈ S, old[v][s] := Empty(), new[v][s] := Empty()
repeat

for each v ∈ V , s ∈ S, old[v][s] := new[v][s]
for each s ∈ S

for each v ∈ V , temp[v] := Empty()
for each (s′, s) ∈ E, temp[v] := Union(temp[v], old[v][s′])

for each v ∈ V , new[v][s] := temp[v]
switch s.type

case null skip
case read // v := get input

new[v][s] := Universal()
case assign // v := v1

new[v][s] := temp[v1]
case concat // v := concat(v1, v2)

new[v][s] := Concat(temp[v1],temp[v2])
case replace // v := replace(v1, e, c)

where e is a regular expression and c is a string.
DFA t1 := Construct(e), DFA t2 := Construct(c)
new[v][s] := Replace(temp[v1], t1, t2)

case restrict // restrict(v,e)
DFA t1 := Construct(e)
new[v][s] := Intersect(old[v][s],t1)

for each v ∈ V , s ∈ S, old[v][s] := Widening(old[v][s],new[v][s])
until (for all v, s, EquCheck(old[v][s], new[v][s]))
if (EmpCheck(Intersect(new[variable][statement], attack))) then ver else err

Fig. 1. String analysis algorithm

the string values that the variable v can take at the program point s during any
program execution. We compute these DFA using a least fixpoint computation
as shown in Figure 1. Since the lattice is infinite, it might not be possible to reach
the least fixpoint using an iterative algorithm. To tackle this problem, we apply
the automata widening operator in [3] to our analysis. Following Bartzis and
Bultan’s results, we characterize a set of languages that this widening operator
can result in the precise fixed point. Our string analysis algorithm returns ver

if it is not possible for the input variable to have a string value that matches the
attack pattern at the given program point; however, it may yield a false alarm
while it returns err.

Symbolic Automata Representation: We use the DFA library of MONA [4]
to implement the string operations listed above. In MONA, transition relations
of DFA are symbolically represented using Multi-terminal Binary Decision Dia-
grams (MBDDs). A MBDD is a BDD with multiple roots and multiple leaves.
In MONA’s DFA representation, each state of the DFA is a root and points to

312 F. Yu et al.

a BDD node, and each leaf value is a state of the DFA. Given the current state
and a symbol a ∈ Bk, where Bk is alphabet of bit vectors of length k, one can
find the next state by following the BDD nodes according to the bit vector of
a from the BDD node pointed by the current state. We use a 7-bit vector, i.e.,
B7, as our alphabet representing the binary value of ASCII symbols, e.g., for
the ASCII symbol ‘a’, the ASCII code is 97 which is represented as ‘1100001’ in
our encoding.

The MONA DFA library provides efficient implementations of standard au-
tomata operations. These operations include product, project and determinize,
and minimize [4]. The product operation takes the Cartesian product of the
states of the two input automata. We use the product operation to implement
the intersection and union operations. The project and determinize operation,
denoted as Project(M, i), where 1 ≤ i ≤ k, converts a DFA M recognizing a
language L over the alphabet Bk, to a DFA M ′ recognizing a language L′ over
the alphabet Bk−1, where L′ is the language that results from applying the tuple
projection on the ith bit to each symbol of the alphabet. The process consists
of removing the ith track of the MBDD and determinizing the resulting MBDD
via on-the-fly subset construction.

3 String Operations on Automata

In this section, we describe how to implement the closure, concatenate and re-
place operations. Since we use MBDD representation for DFA, we are not able
to introduce ε-transitions. Instead, to avoid the non-determinism introduced by
these operations, we extend the alphabet by adding extra bits, and then use
projection to map the resulting DFA to the original alphabet.

A DFA M is a tuple 〈Q, q0, Σ, δ, F 〉 where Q is a finite set of states, q0 is the
initial state, Σ ⊆ Bk is the alphabet, where each symbol is encoded as a k-bit
string. F : Q → {−, +} is a mapping function from a state to its status. Given a
state q ∈ Q, q is an accepting state if F (q) = +. δ : Q×Σ → Q is the transition
relation. A state q of M is a sink state if ∀α ∈ Σ, δ(q, α) = q and F (q) = −.
In the following sections, we assume that for all unspecified pairs (q, α), δ(q, α)
goes to a sink state. In the constructions below, we also ignore the transitions
that lead to a sink state.

Given α ∈ Bk, we use α0 or α1 ∈ Bk+1 to denote the bit string that is α
appended with ‘0’ or ‘1’. For instance, if α is ‘110011’ then α0 is ‘1100110’.

Closure: The DFA M is a closure-DFA of the DFA M1, if L(M) = { w1w2 . . . wk

| ∃k > 0, ∀1 ≤ i ≤ k, wi ∈ L(M1)}.
Given M1 = 〈Q1, q10, Σ, δ1, F1〉, its closure M can be constructed by first

constructing an intermediate DFA M
′
= 〈Q1, q10, Σ

′
, δ

′
, F1〉 as:

– Σ
′
= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}

– ∀q, q′ ∈ Q1, δ
′
(q, α0) = q′, if δ1(q, α) = q′.

– ∀q ∈ Q1, δ
′
(q, α1) = q′, if F1(q) = + and δ1(q10, α) = q′.

Symbolic String Verification: An Automata-Based Approach 313

Then, M = Project(M
′
, k + 1) is the closure of M1.

Since M1 is a DFA, the project operation requires the subset construction
only when there exists q ∈ Q1, F1(q) = +, and ∃α, q′, q

′′
, α ∈ Σ, q′, q

′′ ∈ Q1, q
′ �=

q
′′
, δ1(q, α) = q′, δ1(q10, α) = q

′′
.

Concatenation: The DFA M is a concatenation-DFA of the DFA M1 and M2,
if L(M) = {w1w2 | w1 ∈ L(M1), w2 ∈ L(M2)}.

Given M1 = 〈Q1, q10, Σ, δ1, F1〉 and M2 = 〈Q2, q20, Σ, δ2, F2〉, the
concatenation-DFA M can be constructed as follows. Without loss of gener-
ality, we assume that Q1 ∩Q2 is empty. We first construct an intermediate DFA
M

′
= 〈Q′

, q10, Σ
′
, δ

′
, F

′〉, where

– Q
′
= Q1 ∪Q2

– Σ
′
= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}

– ∀q, q′ ∈ Q1, δ
′
(q, α0) = q′, if δ1(q, α) = q′

– ∀q, q′ ∈ Q2, δ
′
(q, α0) = q′, if δ2(q, α) = q′

– ∀q ∈ Q1, δ
′
(q, α1) = q′, if F1(q) = + and ∃q′ ∈ Q2, δ2(q20, α) = q′

– ∀q ∈ Q1, F
′
(q) = +, if F1(q) = + and F2(q20) = +; F

′
(q) = −, o.w.

– ∀q ∈ Q2, F
′
(q) = F2(q).

Then, M = Project(M
′
, k +1). Again, since both M1 and M2 are DFA, the

subset construction happens only when there exists q ∈ Q1, F1(q) = + such that
∃α, q′, q

′′
, α ∈ Σ, q′ ∈ Q1, q

′′ ∈ Q2, δ1(q, α) = q′, δ2(q20, α) = q
′′
.

Replacement: A DFA M is a replaced-DFA of a DFA tuple (M1, M2, M3), if
and only if L(M) = {w | k > 0, w1x1w2 . . . wkxkwk+1 ∈ L(M1),
w = w1c1w2...wkckwk+1, ∀1 ≤ i ≤ k, xi ∈ L(M2), ci ∈ L(M3), ∀1 ≤ i ≤
k + 1, wi �∈ {w′

1x
′w′

2 | x′ ∈ L(M2), w′
1, w

′
2 ∈ Σ∗}}.

This definition requires that all occurrences of matching sub-strings in a word
are replaced. The intuition of the implementation of this language-based re-
placement is that we first insert marks into automata, then identify matching
sub-strings by intersection of automata, and finally construct the final automa-
ton by replacing these matching sub-strings.

We consider a new alphabet Σ̄ = {ᾱ|α ∈ Σ}, and let x̄ denote a new string
in which we add bar to each character in x. Assume that M1, M2, M3 have the
same alphabet Σ, where �1, �2 �∈ Σ, and ∀α ∈ Σ, ᾱ �∈ Σ. We define M

′

1, M2
′ and

M as follows, and claim that M accepts the same language as the replaced-DFA
of the tuple (M1, M2, M3).

– M
′

1, where L(M
′

1) = {w′ | k > 0, w = w1x1w2 . . . wkxkwk+1 ∈ L(M1), w′ =
w1�1x̄1�2w2 . . . wk�1x̄k�2wk+1}.

– M
′

2, where L(M
′

2) = {w′ | k > 0, w′ = w1�1x̄1�2w2 . . . wk�1x̄k�2wk+1, ∀1 ≤
i ≤ k, xi ∈ L(M2), ∀1 ≤ i ≤ k + 1, wi ∈ L(Mh)} , where L(Mh) is the set of
strings which do not contain any substring in L(M2). The language L(Mh)
is defined as the complement set of {w1xw2 | x ∈ L(M2), w1, w2 ∈ Σ∗}.

– M , where L(M) = {w | k > 0, w1�1x̄1�2w2 . . . wk�1x̄k�2wk+1 ∈ L(M
′

1) ∩
L(M

′

2), w = w1c1w2 . . . wkckwk+1, ∀1 ≤ i ≤ k, ci ∈ L(M3)}.

314 F. Yu et al.

To distinguish the original and bar alphabets, we append an extra bit to α so
thatα is α0 and ᾱ is α1. Given M1 = 〈Q1, q10, Σ, δ1, F1〉, M2 = 〈Q2, q20, Σ, δ2, F2〉,
and M3 = 〈Q3, q30, Σ, δ3, F3〉, the process to construct a replaced-DFA M can be
decoupled into the following steps:

1. Construct M1
′ from M1,

2. Construct M
′

2 from M2,
3. Generate M

′
as the intersection of M

′

1 and M
′

2,
4. Construct M

′′
from M

′
where the strings that appear between �1 and �2 are

replaced by words in L(M3), and
5. Generate M from M

′′
by projection.

We formally describe the implementation of these steps below. As a run-
ning example, we use L(M1) = {baab}, L(M2) = a+ (M2 accepts the language
{a, aa, aaa, . . .}) and L(M3) = {c} or L(M3) = {ε}. Let |M | denote the num-
ber of states of M . An upper bound for each intermediate automaton before
projection and minimization is also described.

Step 1: M
′

1 = 〈Q′

1, q10, Σ
′
, δ

′

1, F
′

1〉 is constructed from M1, where

– Q
′

1 = Q1 ∪Q1′ , Q1′ is the duplicate of Q1. For all q ∈ Q1, there is a one to
one mapping q′ ∈ Q1′ .

– Σ
′
= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ} ∪ {�1, �2}

– δ
′

1(q1, α0) = q2 and δ
′

1(q1′ , α1) = q2′ , if δ1(q1, α) = q2

– ∀q1 ∈ Q1, δ
′

1(q1, �1) = q1′ and δ
′

1(q1′ , �2) = q1

– ∀q ∈ Q1, F
′

1(q) = F1(q) and ∀q ∈ Q1′ , F
′

1(q) = 0.

An example for constructing M
′

1 from M1, where L(M1) = {baab}, is given
in Fig 2. |M ′

1| is bounded by 2|M1|.

(a) M1 : {baab} (b) M
′
1

Fig. 2. Constructing M
′
1 from M1

Step 2: To construct M
′

2, we first construct Mh which accepts the complement
set of {w1xw2 | w1, w2 ∈ Σ∗, x ∈ L(M2)}. For instance, as shown in Fig 3(b), for
L(M2) = a+, Mh is the DFA that accepts (Σ\{a})∗. Let M∗ be the DFA accept-
ing Σ∗. Mh can be constructed by Negate(Concat(Concat(M∗, M2), M∗)).
We obtain the DFA in Fig 3(b) by applying this construction with minimization.

Assume Mh = 〈Qh, qh0, Σ, δh, Fh〉, and M2 = 〈Q2, q20, Σ, δ2, F2〉. M
′

2 =
〈Q′

2, qh0, Σ
′
, δ

′

2, F
′

2〉 can then be constructed as:

Symbolic String Verification: An Automata-Based Approach 315

– Q
′

2 = Qh ∪Q2

– Σ
′
= {α0 | ∀α ∈ Σ} ∪ {α1 | ∀α ∈ Σ} ∪ {�1, �2}

– ∀q, q′ ∈ Qh, δ
′

2(q, α0) = q′, if δh(q, α) = q′

– ∀q, q′ ∈ Q2, δ
′

2(q, α1) = q′, if δ2(q, α) = q′

– ∀q ∈ Qh, δ
′

2(q, �1) = q20 if Fh(q) = +
– ∀q ∈ Q2, δ

′

2(q, �2) = qh0 if F2(q) = +
– ∀q ∈ Qh, F

′

2(q) = Fh(q) and ∀q ∈ Q2, F
′

2(q) = −.

The corresponding M
′

2 for our example is shown in Fig 3(c). |M ′

2| is bounded
by |Mh|+ |M2|, where |Mh| is bounded by |M2|+ 2.

(a) M2 (b) Mh (c) M
′
2

Fig. 3. Constructing M
′
2 from M2 and Mh

Step 3: M
′
= 〈Q′

, q
′

0, Σ
′
, δ

′
, F

′〉 is generated as the intersection of M
′

1 and M
′

2

based on production. The example M
′

is shown in Fig 4 (a). |M ′ | is bounded
by |M ′

1| × |M
′

2|.
Step 4: Before we construct M

′′
from M

′
, we first introduce a function reach :

Q
′ → 2Q

′
, which maps a state to all its �-reachable states in M

′
. We say q′ is

�-reachable from q if there exists a sequence q, q1, . . . , qn, q′ so that (1) n ≥ 1,
(2) δ

′
(q, �1) = q1, (3) δ

′
(qn, �2) = q′, and (4) ∀0 < i < n, δ

′
(qi, x) = qi+1, where

x ∈ {α1 | ∀α ∈ Σ}. For instance, in Fig 4 (a), one can find that reach(i) = {j, k}
and reach(j) = {k}. Intuitively, one can think that each pair (q, q′), where
q′ ∈ reach(q), identifies a word in L(M2).

Our goal is, for each q′ ∈ reach(q), inserting paths between q and q′ that
recognize all words in L(M3). If there exist q′, q

′′ ∈ reach(q) and q′ �= q
′′
, this

insertion will cause nondeterminism. To tackle this problem, as we did in the
construction of closure and concatenation, we add extra bits to the alphabet
and later project them away. Assume n is the maximum size of reach(q) for all
q ∈ Q

′
. We need at most #log(n + 1)$ bits to be added to the alphabet so that

the construction can result in a DFA. Let P = {q | q ∈ Q
′
, reach(q) > 0}. Let

m = #log(n + 1)$, where n is the maximum size of reach(q) for all q ∈ P . Let
mq be an m-bit string. For α ∈ Bk, αmq ∈ Bk+m is a string in which mq is
appended to α. Let m0 be an m-bit string of 0s. We assume ∀q, mq �= m0, and
for any q ∈ P , m′

q �= m′′
q if q′, q′′ ∈ reach(q).

The construction of M
′′

depends on L(M3). We consider the following three
cases: (1) M3 only accepts single characters, i.e., L(M3) ⊆ Σ, (2) M3 only accepts
words with more than one character, i.e., L(M3) ⊆ Σ+ \Σ, (3) M3 only accepts
the empty string, i.e., L(M3) = {ε}.

316 F. Yu et al.

Case 1: ∀w ∈ L(M3), |w| = 1. M
′′

= 〈Q′
, q

′

0, Σ
′′
, δ

′′
, F

′〉 is constructed as:

– Σ
′′ ⊆ Bk+m

– ∀q ∈ Q
′
, δ

′′
(q, αm0) = q′, if δ

′
(q, α0) = q′

– ∀q ∈ P, ∀q′ ∈ reach(p), ∀α ∈ L(M3), δ
′′
(q, αmq′) = q′.

In Fig 4(a), P = {i, j}, reach(i) = {j, k} and reach(j) = k. Let L(M3) = {c}.
M

′′
of our example is shown in Fig 4(b). Each symbol is appended with two

extra bits, e.g., δ(i, c01) = j and δ(i, c10) = k. |M ′′ | is bounded by |M ′ |.

(a) M
′

(b) M
′′
: case 1 (c) M

′′
: case 3

Fig. 4. Constructing M
′′

from M
′
. M

′
is the intersection of M1

′ and M
′
2

Case 2: ∀w ∈ L(M3), |w| ≥ 2. For each p ∈ P , we construct a copy of M3

as Mp = 〈Qp, qp0, Σ, δp, Fp〉. M
′′

is constructed by inserting Mp between p and
reach(p).

M
′′

= 〈Q′′
, q

′

0, Σ
′′
, δ

′′
, F

′′〉, where

– Q
′′

= Q
′ ⋃

p∈P Qp

– Σ
′′ ⊆ Bk+m

– ∀q ∈ Q
′
, δ

′′
(q, αm0) = q′, if δ

′
(q, α0) = q′

– ∀p ∈ P, ∀q ∈ Qp, δ
′′
(q, αm0) = q′, if δp(q, α) = q′.

– ∀p ∈ P, δ
′′
(p, αmq) = q, if δp(qp0, α) = q.

– ∀p ∈ P, ∀q ∈ reach(p), δ
′′
(q′, αm0) = q, if δp(q′, α) = q

′′
and Fp(q

′′
) = +.

– ∀q ∈ Q
′
, F

′′
(q) = F

′
(q)

– ∀p ∈ P, q ∈ Qp, F
′′
(q) = −.

In this case, |M ′′ | is bounded by |M ′ |+ |M ′ | × |M ′ | × |M3|.
Case 3: ∀w ∈ L(M3), |w| = 0. We consider this case as deletion. Before we
start the construction, it is worth to know that for deletion, one may change the
argument M2 to N , where L(N) = L(M2)+ (Kleene plus closure) , and get the
same result. We specify this property as follows.

Property 1. Let M=Replace(M1, M2, M3), and M
′
=Replace(M1, N , M3),

where L(N) = L(M2)+. L(M) = L(M
′
) if L(M3) = {ε}.

The correctness comes from the fact that, by construction, if there exists w ∈
L(N), then there exists k > 0, w = w1w2 . . . wk, where ∀1 ≤ i ≤ k, wi ∈ L(M2).
Since w or any wi will be deleted after the replacement, using N instead of M2

yields the same result.

Symbolic String Verification: An Automata-Based Approach 317

Note that the �-reachable states of M ′ using N is actually the set of reachable
closure of the �-reachable states of M ′ using M2. This facilitates our construction
by taking all deleted pairs into account in one step. In the following construction,
without loss of the generality, we assume that the matching strings are accepted
by N . N can be constructed from the original M2 by our closure operation.

M
′′

can then be constructed as 〈Q′
, q

′

0, Σ
′′
, δ

′′
, F

′′〉, where

– Σ
′′ ⊆ Bk+m

– ∀q ∈ Q
′
, δ

′′
(q, αm0) = q′, if δ

′
(q, α0) = q′

– ∀p ∈ P, ∀q ∈ reach(p), δ
′′
(p, αmq′) = q′, if δ

′
(q, α0) = q′.

– ∀p ∈ P, F
′′
(p) = +, if ∃q ∈ reach(p), F

′
(q) = +.

– F
′′
(q) = F

′
(q), o.w.

Let L(M3) = {ε}. The result of M
′′

is shown in Fig 4(c). Note that if M2 =
{a}, we would get the same result. |M ′′ | is bounded by |M ′ |.

Finally, consider M3 as a general DFA. Replace(M1, M2, M3) can be con-
structed as the union of the results of the following three operations:

– Replace(M1, M2, M31), where L(M31) = L(M3) ∩Σ
– Replace(M1, M2, M32), where L(M32) = L(M3) ∩ Σ+ \Σ
– Replace(M1, M2, M33), where L(M33) = L(M3) ∩ {ε}

Our replacement operation is defined in a general case in terms of M3. For
all replacement statements in PHP programs, such as str replace, preg replace,
and ereg replace, L(M3) is a constant string. In our implementation, we deter-
mine which type of construction to apply based on the length of this string.

Step 5: Finally, we get M over Σ by iteratively projecting away the extra bits.
The subset construction is only applied when needed.

The final DFA M =Replace(M1, M2, M3), where L(M1) = {baab}, L(M2) =
a+, and L(M3) = {c}, is shown in Fig 5. M accepts {bcb, bccb}.

In PHP programs, replacement operations such as ereg replace can use differ-
ent replacement semantics such as longest match or first match. Our replacement
operation provides an over approximation of such more restricted replace seman-
tics. For the example above, in the longest match semantics, M only accepts bcb,
in which the longest match aa is replaced by c. In the first match semantics, M
only accepts bccb, in which two matches a and a are replaced with c. Both of
these are included in the result obtained by our replacement operation. This over
approximation works well for our benchmarks, and does not raise false alarms.
Indeed, we have observed that most statements we encountered yield the same
result in the first and longest match semantics, e.g.,ereg replace("<script
*>","",$ GET["username"]);, and are precisely modelled by our language-
based replacement operation.

4 Widening Automata

In this section, we describe the widening operator we use, which was originally
proposed for arithmetic automata by Bartzis and Bultan [3].

318 F. Yu et al.

(a) M
′′
1 (b) M

Fig. 5. M
′′
1 is Project(M

′′
, k + 2), M is Project(M

′′
1 , k + 1)

Given two finite automata M = 〈Q, q0, Σ, δ, F 〉 and M ′ = 〈Q′, q′0, Σ, δ′, F ′〉,
we first define the binary relation ≡∇ on Q ∪ Q′ as follows. Given q ∈ Q and
q′ ∈ Q′, we say that q ≡∇ q′ and q′ ≡∇ q if and only if

∀w ∈ Σ∗. F (δ∗(q, w)) = + ⇔ F (δ′∗(q′, w)) = +. (1)

or q, q′ �= sink ∧ ∃w ∈ Σ∗. δ∗(q0, w) = q ∧ δ′∗(q′0, w) = q′, (2)

where δ∗(q, w) is defined as the state that M reaches after consuming w starting
from state q. In other words, condition 1 states that q ≡∇ q′ if ∀w ∈ Σ∗, w
is accepted by M from q then w is accepted by M ′ from q′, and vice versa.
Condition 2 states that q ≡∇ q′ if ∃w ∈ σ, M reaches state q and M ′ reaches
state q′ after consuming w from its initial state. For q1 ∈ Q and q2 ∈ Q we say
that q1 ≡∇ q2 if and only if

∃q′ ∈ Q′. q1 ≡∇ q′ ∧ q2 ≡∇ q′ ∨ ∃q ∈ Q. q1 ≡∇ q ∧ q2 ≡∇ q (3)

Similarly we can define q′1 ≡∇ q′2 for q′1 ∈ Q′ and q′2 ∈ Q′.
It can be seen that ≡∇ is an equivalence relation. Let C be the set of equiva-

lence classes of ≡∇. We define M∇M ′ = 〈Q′′, q′′0 , Σ, δ′′, F ′′〉 by:

Q′′ = C

q′′0 = c s.t. q0 ∈ c ∧ q′0 ∈ c

δ′′(ci, σ) = cj s.t. (∀q ∈ ci ∩Q. δ(q, σ) ∈ cj ∨ δ(q, σ) = sink) ∧
(∀q′ ∈ ci ∩Q′. δ′(q′, σ) ∈ cj ∨ δ′(q′, σ) = sink)

F ′′(c) = + s.t. ∃q ∈ F ∪ F ′. q ∈ c. F ′′(c) = − o.w.

In other words, the set of states of M∇M ′ is the set C of equivalence classes of
≡∇. Transitions are defined from the transitions of M and M ′. The initial state
is the class containing the initial states q0 and q′0. The set of final states is the
set of classes that contain some of the final states in F and F ′. It can be shown
that, given two automata M and M ′, L(M) ∪ L(M ′) ⊆ L(M∇M ′) [3].

In Fig 6, we give an example for the widening operation. L(M) = {ε, ab}
and L(M ′) = {ε, ab, abab}. The set of equivalence classes is C = {q′′0 , q′′1}, where
q′′0 = {q0, q

′
0, q2, q

′
2, q

′
4} and q′′1 = {q1, q

′
1, q

′
3}. L(M∇M

′
) = (ab)∗.

As shown in Fig 1, we use this widening operator iteratively to compute an
over-approximation of the least fixpoint that corresponds to the reachable values
of string expressions. To simplify the discussion, let us assume a program with

Symbolic String Verification: An Automata-Based Approach 319

(a) M (b) M ′ (c) M∇M ′

Fig. 6. Widening automata

a single string variable represented with one automaton M . Let Mi represent
the automaton computed at the ith iteration and let I denote the initial value
of the string variable. The fixpoint computation will compute a sequence M0,
M1, ..., Mi, ..., where M0 = I and Mi = Mi−1 ∪ post(Mi−1) where the post-
condition for different statements is computed as described in Fig 1. We reach
the least fixpoint Mj if at some iteration, Mj = Mj−1. Since we are dealing with
an infinite state system, the computation may not converge. In the following, we
use M∞ to denote the least fixpoint.

Given the widening operator, we actually compute an sequence M ′
0, M ′

1, ...,
M ′

i , ..., that over-approximates the fixpoint computation where M ′
i is defined as:

M ′
0 = M0, and for i > 0, M ′

i = M ′
i−1∇(M ′

i−1∪post(M ′
i−1)). Let M ′

∞ denote the
least fixpoint of this approximate sequence. Then we have the following result [3]:

Definition 1. M1 = 〈Q1, q01, Σ, δ1, F1〉 is simulated by M2 =〈Q2, q02, Σ, δ2, F2〉
iff there exists a total function f : Q1 \ {sink} → Q2 such that δ1(q, σ) = sink
or f(δ1(q, σ)) = δ2(f(k), σ) for all q ∈ Q1 \ {sink} and σ ∈ Σ. Furthermore,
f(q01) = q02 and for all q ∈ F1, f(q) ∈ F2.

Definition 2. M = 〈Q, q0, Σ, δ, F 〉 is state-disjoint iff there is no state q ∈ Q
such that there exist α ∈ Σ and q′, q′′ ∈ Q, q′ �= q′′, and δ(q′, α) = q and
δ(q′′, α) = q.

Theorem 1. If (1) M∞ exists, (2) M∞ is a state-disjoint automaton, and (3)
M0 is simulated by M∞, then (1) M ′

∞ exists and (2) M ′
∞ = M∞.

Consider a simple example where we start from an empty string and sim-
ply concatenate a substring ab at each iteration. The exact sequence M0, M1,
..., Mi, ... will never converge to the least fixpoint, where L(M0) = {ε} and
L(Mi) = {(ab)k | 1 ≤ k ≤ i} ∪ {ε}. However, M∞ exists and L(M∞) = (ab)∗.
In addition, M∞ is a state-disjoint automaton, and M0 is simulated by M∞.
Based on Theorem 1, these conditions imply that once the computation of the
approximate sequence reaches the fixpoint, the fixpoint is equal to M∞ and the
analysis is precise. Computation of the approximate sequence is shown in Fig 7.
M ′

i = M ′
i−1∇(M ′

i−1∪post(M ′
i−1, R)), where post(M) returns an automaton that

accepts {wab | w ∈ L(M)}. In this case, we reach the fixpoint at the 3rd iteration
and M ′

∞ = M∞ = M ′
3.

A more general case that we commonly encounter in real programs is that
we start from a set of initial strings (accepted by Minit), and concatenate an
arbitrary but fixed set of strings (accepted by Mtail) at each iteration. Based on

320 F. Yu et al.

(a) M ′
0 (b) M ′

1 (c) M ′
2 (d) M ′

3

Fig. 7. An approximate sequence

Theorem 1 one can conclude that if the DFA M that accepts L(Minit)L(Mtail)∗

is state-disjoint, then our analysis via widening will reach the precise least fix-
point when it terminates.

5 Experiments

We experimented with our string analysis tool on a number of test cases ex-
tracted from a set of real-world, open source applications: MyEasyMarket-4.1 (a
shopping cart program), PBLguestbook-1.32 (a guestbook application),
Aphpkb-0.71 (a knowledge base management system), BloggIT-1.0 (a blog en-
gine), and proManager-0.72 (a project management system). We believe that
these programs are representative of how web applications use regular expression
based replacement functions to modify their input (in particular, in a security
context, to perform input sanitization), and, thus, are good test cases for our
technique. These vulnerable functions were identified and sanitized by Balzarotti
et al. in [2, 1].

Table 5 shows the results of applying our string analysis tool to these pro-
grams. The first column of Table 5 identifies the application, the function that
was analyzed and the line number for the vulnerable operation. For each test
case we analyzed the original version of the program (that contained the vulner-
ability) and a modified version which was modified with the intention of fixing
the vulnerability. Our analysis is quite efficient and takes a couple of seconds.
Since our string analysis tool is sound, it identifies the existing vulnerabilities
correctly in each case. However, since our conservative approximations can lead
to false positives, the fact that our tool identifies a possible vulnerability does
not mean that it is guaranteed to be a vulnerability.

The impressive part of our results is that for all the modified program segments
our approach is able to prove that the sanitization is correct. This indicates that
the approximations we use work quite well in real-world applications.

We also experimented with Saner [1] to check these benchmarks. We discuss
this tool in related work. The results are shown in table 5. Our tool performs
slightly better than Saner in terms of time. It is interesting to note that there are
some conflicts on the verification results. Saner performs bounded verification
and approximates the value of out of bound computation as arbitrary strings.
This rough approximation raises a false alarm while checking the sanitized ver-
sion of PBLguestbook-1.32(1210). While checking BloggIT-1.0, Saner, in the de-
fault configuration, assumes that data from the database are sanitized; while we
assume that these data may be tainted and model them the same as data from

Symbolic String Verification: An Automata-Based Approach 321

Table 1. Experimental results. Application: name of the application and the checked
program point. Version: o-original, m-modified. Res.: y-the intersection of attack strings
is not empty (vulnerable), n-the intersection of attack strings is empty (secure). Final
DFA is the minimized DFA at the checked program point, and Peak DFA is the largest
DFA observed during the fixpoint iteration. state: number of states. bdd: number of
bdd nodes. n: number of warnings raised by Saner. type:(1) xss - cross site scripting
vulnerablity, (2) sql - SQL injection vulnerability, (3) reg - regular expression error.

Application Ver. Res. Final DFA Peak DFA Time Mem Saner Saner
File(line) state(bdd) state(bdd) user+sys(sec) (kb) n(type) Time(sec)

MyEasyMarket-4.1 o y 17(133) 17(148) 0.010+0.002 444 1(xss) 1.173
trans.php(218) m n 17(132) 17(147) 0.009+0.001 451 0 1.139

PBLguestbook-1.32 o y 42(329) 42(376) 0.019+0.001 490 1(sql) 1.264
pblguestbook.php(1210) m n 49(329) 42(376) 0.016+0.002 626 1(sql) 1.665

PBLguestbook-1.32 o y 842(6749) 842(7589) 2.57+0.061 13310 1(reg) 4.618
pblguestbook.php(182) m n 774(6192) 740(6674) 1.221+0.007 8184 1(reg) 4.331

Aphpkb-0.71 o y 27(219) 289(2637) 0.045+0.003 2436 1(xss) 1.220
saa.php(87) m n 18(157) 1324(15435) 0.177+0.009 11388 0 1.622
BloggIT 1.0 o y 79(633) 79(710) 0.499+0.002 3569 0 0.558

admin.php(23,25,27) o y 126(999) 126(1123)
o y 138(1095) 138(1231)
m n 79(637) 93(1026) 0.391+0.006 5820 0 0.559
m n 115(919) 127(1140)
m n 127(1015) 220(2000)

proManager-0.72 o y 387(3166) 2697(29907) 1.771+0.042 13900 1(xss) 6.980
message.php(91) m n 423(3470) 2697(29907) 2.091+0.051 19353 0 7.201

users. Saner raises an error for the sanitization routine in PBLguestbook-1.32(182)
since it does not support the syntax of the replace operator used in that routine.

6 Related Work

Due to its importance in security, string analysis has been widely studied. Chris-
tensen, Møller and Schwartzbach [7] proposed a grammar-based string anal-
ysis (implemented in a tool called JSA) to statically determine the values of
string expressions in Java programs. They convert the flow graph into a con-
text free grammar where each string variable corresponds to a nonterminal,
and each string operation corresponds to a production rule. Then, they con-
vert this grammar to a regular language by computing an over-approximation.
Gould et al. [11] use this grammar-based string analysis technique to check for
errors in dynamically generated SQL query strings in Java-based web applica-
tions [7]. Christodorescu et al. [8] present an implementation of the grammar-
based string analysis technique for executable programs for the x86 architecture.
Minamide [13] supports string-based replacement operations by escaping replace
operations to finite-state transducers, and describes a string analysis similar
to JSA to statically detect cross-site scripting vulnerabilities and to validate
pages generated by web applications written in the PHP language. Wasser-
mann et al. [18] proposed a static analysis to detect SQL injections following
Minamide [13]. There are some other tools for string analysis [19,6,15,9]. Shan-
non et al. [15] propose forward bounded symbolic execution to perform string

322 F. Yu et al.

analysis on Java programs. Similar to our approach, automata are used to trace
path constraints and encode the values of string variables. They support trim and
substring operations. Xie and Aiken [19] support string assignment and valida-
tion operations. Fu et al. [9] and Choi et al. [6] support string-based replacement
(as opposed to language-based replacement). None of the tools mentioned above
addresses language-based replacement operations. This defect causes the approx-
imations computed by these tools to be too coarse for some input sanitization
routines.

Language-based replacement has been discussed in computational linguis-
tics [12,14,10,17]. These algorithms are based on the composition of finite state
transducers. By composing specific transducers, constraints like longest match
and first match can be precisely modeled. However, each composition may result
in a quadratic size of non-deterministic automaton, and is more likely to blow-up
compared to our construction. The transducer-based replacement function [14]
has been implemented in Finite State Automata utilities (FSA) [16], where au-
tomata are stored and manipulated using an explicit representation. We use a
symbolic DFA representation based on MBDDs. This symbolic encoding enables
us to perform complex automata operations, such as closure, concatenation, re-
place, and widening, efficiently using the MBDDs.

Balzarotti et al. [1] combine both dynamic and static techniques to verify PHP
programs. They support language-based replacement by incorporating FSA [16],
but they only support bounded computation for loops and approximate variables
updated in a loop as arbitrary strings once the computation does not converge
within a fixed bound. We incorporate the widening operator in [3] to tackle this
problem and obtain a tighter approximation that enables us to verify a larger
set of programs.

Choi et al. [6] also investigates a widening method to analyze strings. The
widening operator is defined on strings and the widening of a set of strings is
achieved by applying the widening operator pairwise to each string pair. The
widening operator we use is defined on automata, and was originally proposed
for arithmetic constraints [3]. The intuition behind this widening operator is
applicable to any symbolic fixpoint computation that uses automata. In [3] it
is proved that for a restricted class of systems the widening operator computes
the precise fixpoint and we extend this result to our analysis. Moreover, in our
experiments, the over-approximation computed by this widening operator works
well to prove the properties we were interested in.

Finally, the use of automata as a symbolic representation for verification has
been investigated in other contexts (e.g., [5]). In this paper we focus on verifica-
tion of string manipulation operations in PHP programs.

7 Conclusion

We proposed a symbolic approach for string verification on PHP programs. Our
approach computes a conservative approximation of the set of values that a
string variable can take at a given program point. We use a symbolic automata

Symbolic String Verification: An Automata-Based Approach 323

representation based on MBDDs and implement the string operations such as
concatenation and replacement on this symbolic representation. Our experiments
demonstrate that the proposed string analysis technique is capable of verifying
the correctness of string sanitization operations in real-world PHP programs.

References

1. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C.,
Vigna, G.: Saner: Composing Static and Dynamic Analysis to Validate Sanitization
in Web Applications. In: Proc. Symposium on Security and Privacy (2008)

2. Balzarotti, D., Cova, M., Felmetsger, V., Vigna, G.: Multi-module vulnerability
analysis of web-based applications. In: Proc. 14th ACM conference on Computer
and communications security, pp. 25–35. ACM, New York (2007)

3. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Proc. 16th International
Conference on Computer Aided Verification, pp. 321–333 (2004)

4. Biehl, M., Klarlund, N., Rauhe, T.: Algorithms for guided tree automata. In: Ray-
mond, D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260. Springer, Hei-
delberg (1997)

5. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Proc. 12th International Conference on Computer Aided Verification, pp. 403–418
(2000)

6. Choi, T.-H., Lee, O., Kim, H., Doh, K.-G.: A practical string analyzer by the
widening approach. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp.
374–388. Springer, Heidelberg (2006)

7. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

8. Christodorescu, M., Kidd, N., Goh, W.-H.: String analysis for x86 binaries. In:
Proc. 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2005), September 2005, ACM Press, New York
(2005)

9. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis frame-
work for detecting sql injection vulnerabilities. In: Proc. 31st Annual International
Computer Software and Applications Conference. COMPSAC 2007, Washington,
DC, USA, vol. 1, pp. 87–96. IEEE Computer Society, Los Alamitos (2007)

10. Gerdemann, D., van Noord, G.: Transducers from rewrite rules with backrefer-
ences. In: Proc. 9th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 126–133 (1999)

11. Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically generated queries
in database applications. In: Proc. 26th International Conference on Software En-
gineering, pp. 645–654 (2004)

12. Karttunen, L.: The replace operator. In: Proc. 33rd annual meeting on Association
for Computational Linguistics, pp. 16–23 (1995)

13. Minamide, Y.: Static approximation of dynamically generated web pages. In: Proc.
14th International World Wide Web Conference, pp. 432–441 (2005)

14. Mohri, M., Sproat, R.: An efficient compiler for weighted rewrite rules. In: Proc.
34th annual meeting on Association for Computational Linguistics, pp. 231–238.
Association for Computational Linguistics (1996)

324 F. Yu et al.

15. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstracting symbolic
execution with string analysis. In: Proc. Testing: Academic and Industrial Confer-
ence Practice and Research Techniques - MUTATION, Washington, DC, USA, pp.
13–22. IEEE Computer Society, Los Alamitos (2007)

16. van Noord, G.: FSA utilities toolbox, http://odur.let.rug.nl/∼vannoord/Fsa/
17. van Noord, G., Gerdemann, D.: An extendible regular expression compiler for

finite-state approaches in natural language processing. In: Proc. of the 4th Inter-
national Workshop on Implementing Automata (WIA), July 1999, pp. 122–139.
Springer, Heidelberg (1999)

18. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proc. ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, pp. 32–41 (2007)

19. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.
In: Proc. 15th conference on USENIX Security Symposium, Berkeley, CA, USA,
p. 13. USENIX Association (2006)

http://odur.let.rug.nl/~vannoord/Fsa/

Verifying Multi-threaded C Programs

with SPIN

Anna Zaks and Rajeev Joshi�

1 New York University
2 Lab for Reliable Software, Jet Propulsion Laboratory

Abstract. A key challenge in model checking software is the difficulty
of verifying properties of implementation code, as opposed to checking an
abstract algorithmic description. We describe a tool for verifying multi-
threaded C programs that uses the SPIN model checker. Our tool works
by compiling a multi-threaded C program into a typed bytecode for-
mat, and then using a virtual machine that interprets the bytecode and
computes new program states under the direction of SPIN. Our virtual
machine is compatible with most of SPIN’s search options and optimiza-
tion flags, such as bitstate hashing and multi-core checking. It provides
support for dynamic memory allocation (the malloc and free family of
functions), and for the pthread library, which provides primitives often
used by multi-threaded C programs. A feature of our approach is that it
can check code after compiler optimizations, which can sometimes intro-
duce race conditions. We describe how our tool addresses the state space
explosion problem by allowing users to define data abstraction functions
and to constrain the number of allowed context switches. We also de-
scribe a reduction method that reduces context switches using dynamic
knowledge computed on-the-fly, while being sound for both safety and
liveness properties. Finally, we present initial experimental results with
our tool on some small examples.

1 Introduction

A key challenge in applying model checking to software is the difficulty of veri-
fying properties of implementation code, as opposed to checking abstract algo-
rithmic descriptions. Even well understood protocols such as Peterson’s protocol
for mutual exclusion, whose algorithmic description takes only half a page, have
published implementations that are erroneous. This problem is especially acute
in our domain of interest – small, real-time embedded systems in use on robotic
spacecraft – where limits on memory and processor speeds require implementa-
tion ingenuity, but where the risks of failure are high.

� The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronau-
tics and Space Administration. Funding was also provided by the NASA ESAS 6G
project on Reliable Software Engineering.

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 325–342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

326 A. Zaks and R. Joshi

Our work extends previous work on model-driven verification, in which model
checking was applied to the verification of sequential C programs [HJ04],[GJ08].
Model-driven verification is a form of software model checking for C programs
that works by executing C code embedded in a PROMELA model. The SPIN
model checker [Hol03] translates a PROMELA model (along with an LTL prop-
erty to be checked) into a C program pan.c that encodes a model checker that
checks the property in question (in a sense, therefore, SPIN is really a model
checker generator). Because SPIN compiles models into C code, recent ver-
sions (since SPIN 4.0) allow fragments of C programs to be embedded within
PROMELA models. Each such fragment is treated as a deterministic atomic
transition (in SPIN parlance, the equivalent of a “dstep”). This allows SPIN to
be used to check C programs against LTL specifications using most1 of SPIN’s
search options, including bitstate hashing, and multi-core execution[HB07].

A significant limitation of model-driven verification is that each fragment of
embedded C code is executed as an atomic transition by SPIN. This in turn
means that it is hard to (a) check properties (such as assertions and invariants)
at control points within the embedded C code, (b) interrupt the control flow
within a C function (to simulate, say, a device interrupt or an asynchronous
reset), and (c) explore interleavings of more than one fragment of C code, which
is needed in order to check multi-threaded C programs. A discussion of how to
address the first two limitations appears elsewhere [GJ08]; in this paper, we ad-
dress the third limitation of checking multi-threaded C programs. We describe a
tool (named “pancam”) which implements a virtual machine for executing pro-
grams in the LLVM bytecode language [LA04]. Since the state space of even a
small C program is typically much larger than that of most PROMELA models,
we consider various approaches to combat the space explosion problem. In par-
ticular, we describe a technique called superstep reduction that can increase the
granularity of atomic steps on-the-fly during a model checking run. We also dis-
cuss how context-bounding [MQ07] can easily be integrated with our tool, with
only a small modification to our virtual machine, and how pancam allows users
to define data abstractions to reduce state space still further. Finally, we present
initial experimental results with using our tool on some small multi-threaded C
programs.

2 Model Checking C Programs with Pancam

Our approach to checking a concurrent C program with SPIN is to first translate
the program into bytecode for the Low Level Virtual Machine (LLVM) compiler
infrastructure [LA04]. This bytecode is then checked by executing it within the
context of an explicit-state model checker by using a virtual machine interpreter.
In a sense, this approach is similar to Java Pathfinder (JPF) [VHB+03]. However,
1 Two key options not supported for embedded code by SPIN are breadth-first search,

which would require too much additional overhead, and partial-order reduction,
which is difficult for C programs because computing a nontrivial independency re-
lation is hard.

Verifying Multi-threaded C Programs with SPIN 327

#include <pthread.h>

struct pa desc {
volatile int *f0, *f1 ;

int last ;

} ;

...

volatile int pa f0, pa f1, pa last ;

...

void pa desc lock(struct

pa desc *d) {
for (*d->f0=1, pa last=d->last;

*d->f1==1 && pa last==d->last;

) ;

}
...

int count = 0 ;

void threadx critical(void) {
count++ ;

... // critical section

count-- ;

}

void * thread1 main(void *args) {
struct pa desc d ;

pa desc init(&d, 1) ;

for (;;) {
pa desc lock(&d) ;

threadx critical() ;

pa desc unlock(&d) ;

}
return NULL ; /* NOT REACHED */

}

/* pancam helpers */

void init(void) {
pa f0 = pa f1 = pa last = 0 ;

}
Bool check exclusion(void) {
return (count <= 1) ;

}

Fig. 1. Excerpt of C implementation of Peterson’s Algorithm using pthreads, from
the Wikipedia. The two highlighted occurrences of volatile were missing, causing a
potential race condition.

unlike JPF, we do not integrate the model checker with the bytecode interpreter.
Instead, our virtual machine executes bytecode as directed by SPIN, by provid-
ing a method pan step(i) that is called by SPIN to execute the next transition
of thread i. In a sense, therefore, SPIN orchestrates the search by deciding which
thread to execute next, by storing visited states in its hash table, and by restor-
ing a previous state during a backtracking step. This division of labor allows
us to freely benefit from SPIN’s unique abilities, notably its scalability, search
heuristics, and, lately, the capability to deploy it on multi-core CPUs [HB07].
The C language does not have any built-in primitives for concurrency, so our
framework provides support for the constructs from the standard pthreads li-
brary such as mutexes and condition variables. Even though the dynamic thread
creation is not yet fully implemented in pancam, the extension can be organi-
cally incorporated into the framework. The only limitation would be on the total
number of threads, which should not exceed 255 (the bound imposed by SPIN).

To illustrate how our tool works, Fig. 1 shows the C program that appears
in the Wikipedia entry2 for Peterson’s mutual exclusion protocol [wik]. The
property to be checked is mutual exclusion, which is defined by the boolean
valued function check exclusion.

2 To simplify the statement of the mutual exclusion property, we have added an ad-
ditional variable count as shown.

328 A. Zaks and R. Joshi

Our tool first compiles this program into LLVM bytecode, using the llvm-gcc
compiler (an extension of the GNU gcc compiler that generates LLVM bytecode).
LLVM bytecode is like typed assembly language; a sample appears in Fig. 2,
which shows the bytecode corresponding to the pa desc lock function shown
in Fig. 1.

define void @pa desc lock(%struct.pa desc* %d) {
entry:

%tmp1 = getelementptr %struct.pa desc* %d, i32 0, i32 0
%tmp2 = load i32** %tmp1
volatile store i32 1, i32* %tmp2
%tmp4 = getelementptr %struct.pa desc* %d, i32 0, i32 2
%tmp5 = volatile load i32* %tmp4
volatile store i32 %tmp5, i32* @pa last
%tmp8 = getelementptr %struct.pa desc* %d, i32 0, i32 1
%tmp9 = load i32** %tmp8
br label %bb6

bb6:
%tmp10 = volatile load i32* %tmp9
%tmp11 = icmp eq i32 %tmp10, 1
br i1 %tmp11, label %cond next, label %return

cond next:
%tmp15 = volatile load i32* %tmp4
%tmp16 = volatile load i32* @pa last
%tmp17 = icmp eq i32 %tmp15, %tmp16
br i1 %tmp17, label %bb6, label %return

return:
ret void

}

Fig. 2. LLVM bytecode for function pa desc lock

To check the C code for Peterson’s algorithm with our tool, we use a PROMELA
model to make appropriate calls to schedule the threads via our virtual machine.
Fig. 3 shows a SPIN model for checking the program in Fig. 1. The c decl prim-
itive is used to declare external C types and data objects that are used in the em-
bedded C code. For simplicity, we assume the declarations needed by our model
are in the header file pancam peterson.h. Next, the c track declarations are
tracking statements, which are discussed below. The PROMELA process init de-
fines the initialization steps for the SPIN model: as shown, they consist of initial-
izing the interpreter (by calling pan setup()), registering an invariant (defined
by the C function check exclusion) with the interpreter, performing one-time
initialization of the C program (pan run function()), creating and starting the
threads, and, finally, starting one PROMELA process for each thread. As shown,
each PROMELA process then consists of repeatedly executing a single step of the
associated thread (by calling pan step()) provided that the thread is enabled.

The c track declarations provide the essential ingredient that allows us to
use the SPIN model checking engine in conjunction with our interpreter. During

Verifying Multi-threaded C Programs with SPIN 329

c decl {
\#include "pancam peterson.h"
}
c track "csbuf" "CS SIZE" "Matched";
init() {

c code {
pan setup() ;
pan invariant("check exclusion") ;
pan run function("init") ;
pan start thread(0,

"thread0 main", NULL) ;
pan start thread(1,

"thread1 main", NULL) ;
} ;
run thread0() ;
run thread1()

}

proctype thread0() {
do
:: c expr{pan enabled(0)}

-> c code{pan step(0);}
od

}
proctype thread1() {
do
:: c expr{pan enabled(1)}

-> c code{pan step(1);}
od

}

Fig. 3. Spin driver for executing pancam on Peterson’s Algorithm

its depth first search3, whenever SPIN reaches a state with no new successors,
it backtracks to the most recent state that has not been fully explored. For
PROMELA variables, restoration of earlier values when backtracking is auto-
matic, since they are stored in the state vector maintained by SPIN. However,
the state of the pancam virtual machine is not part of the PROMELA model.
Thus the model checker needs explicit knowledge of the region of memory where
this state is stored, so that it can copy and restore this memory during its back-
tracking search. This knowledge is provided through the c track declarations. In
our framework, the bytecode interpreter maintains its state in a single contigu-
ous region of memory starting at address csbuf and occupying CS SIZE bytes;
this corresponds to the c track declaration shown in the figure.

In using our tool to verify the Wikipedia C implementation of Peterson’s
protocol, we discovered a bug in the implementation. The bug is interesting
because it manifests itself when the code is compiled with optimization enabled.
The problem arose from the fact that certain global variables were not originally
marked as volatile (as indicated by the shaded keywords in Fig. 1). As a
result, the optimized bytecode reused stale values read earlier. For example, in
the procedure pa desc lock from Fig. 2, all the instructions that occur after
the second store were removed, leading to scenarios where mutual exclusion was
violated. We have since fixed the Wikipedia entry.

3 Addressing State Space Explosion

Not surprisingly, the biggest challenge in using a tool such as ours is the prob-
lem of state space explosion. Even though our main interest is in checking small
3 SPIN currently supports execution of embedded C code only when using depth first

search mode.

330 A. Zaks and R. Joshi

embedded C programs, the typical state vectors we encounter are much larger
(of the order of hundreds or even thousands of bytes) as compared to typical
PROMELA models (whose state vectors are smaller by one or two orders of mag-
nitude). In addition, because a single line of C may translate into many steps of
bytecode, a naive exploration of all interleavings of a set of threads would quickly
make even the smallest of problems intractable. To address these issues, pancam
uses three techniques: (a) it allows users to provide data abstraction functions,
(b) it provides the ability for the user to enforce context-switch bounding (see
below), and (c) it employs an algorithm that performs a kind of partial order
reduction on-the-fly to reduce the number of context switches without losing
soundness of checking. We describe the first two of these techniques in the rest
of this section; our reduction method is described in Section 4.

3.1 Abstraction

The ability of our tool to support abstractions is derived from the distinction be-
tween tracked and matched objects in SPIN. As discussed in Section 2, a tracked
data object is stored on the stack used by SPIN’s depth first search (DFS), so
that an earlier state of that object can be restored on each backtracking step
during the DFS. In almost all cases4, any data that changes during an execution
should be tracked. A matched object, on the other hand, is one that is part of
the state descriptor that SPIN uses to determine if a state has been seen before.
By declaring an object to be tracked but not matched, we can therefore ex-
clude it from the state descriptor. Support for this is provided by the "Matched"
and "UnMatched" keywords in SPIN. (These keywords were introduced in SPIN
version 4.1.)

The ability to separate tracked and matched data allows us to use data ab-
straction to reduce the size of the state space [HJ04]. A simple but effective
scheme is to define a new auxiliary variable abs for storing the abstract state,
and provide a function update abs() which updates the value of abs based on
the (current) values of the concrete program variables. Then, to make SPIN
search the abstract state space, we declare all concrete program variables as
tracked but "UnMatched", and declare the abstraction variable abs as tracked
and "Matched", and we ensure that the function update abs() is called after
every transition that changes concrete state.

Our tool supports this scheme for data abstraction by providing a buffer abs.
The user provides the function update abs, which computes the data abstraction
and writes it to the buffer. Our tool ensures that this function is invoked if any of
the variables that appear in the body of this function changes during a transition.

3.2 Context-Bounded Checking

The idea in context-bounded model checking [QR05, MQ07, MQ08] is to avoid
state space explosion in multi-threaded programs by enforcing an upper bound on
4 There are valid reasons for not tracking certain data even though it changes during

an execution [GJ08]; see Section 4.2.

Verifying Multi-threaded C Programs with SPIN 331

c decl {
int last proc = -1 ;
int nswitch = 0 ;
int MAX SWITCH = -1 ;

Bool pan enabled cb(int p) {
int i ;

if (!pan enabled(p)) /* thread p is disabled */
return FALSE ;

if (last proc == p) /* no context switch */
return TRUE ;

/* Check if bound not specified, or not reached */
if ((MAX SWITCH < 0) || (nswitch < MAX SWITCH))
return TRUE ;

/* Check if any other thread is enabled */
for (i=0 ; i<ThreadCount ; i++)
if ((i != p) && pan enabled(i))

return FALSE ;
/* all other threads are disabled, so don’t preempt */
return TRUE ;

}

c track "&nswitch" "sizeof(int)" "UnMatched";
c track "&last proc" "sizeof(int)" "UnMatched" ;

Fig. 4. Code for implementing context bounding with pancam

the number of allowed preemptive context switches. A context switch from pro-
cess p to process q is called preemptive if process p is enabled (and could therefore
continue execution if the context switch did not occur). Experience with context-
bounded model checking suggests that, in most cases, errors in multi-threaded
software typically have shortest counterexample traces that require only a small
number of context switches [MQ07]. Thus exhaustive exploration of runs with a
small budget of allowed context switches has a good chance of finding errors.

To extend our tool with support for context-bounded search, we change the top-
level SPIN model that orchestrates the run by replacing calls to pan enabled(p)
(which check if thread p is enabled) by calls to the function pan enabled cb(p)
(which additionally checks the condition for context-bounding). Fig. 4 shows the
C code for the function pan enabled cb. As shown, we add two additional inte-
gers last proc and nswitch to the state space (but note that these variables are
only tracked, and not matched). It is not hard to show that by using it to replace
the originalpan enabled function, (and by appropriatelyupdating last procand
nswitchwhenever a thread is executed)we achieve the desired effect of limiting the
number of preemptive context switches to the user-providedbound of MAX SWITCH.

4 On-the-fly Superstep Reduction

As described in Section 2, our tool uses a SPIN model to orchestrate the state
space search by choosing, at each step, a thread to execute, and executing its next

332 A. Zaks and R. Joshi

transition by invoking the virtual machine. An exhaustive search along these lines
would require exploring all possible interleavings of the threads in the program,
which is intractable for all but the smallest of programs. A common technique used
to deal with the problem is partial order reduction [Pel93, CGP00]. Intuitively,
partial order reduction works by reducing the number of context switches, ex-
ploiting the fact that transitions in different threads are often independent (in the
sense that the order in which they occur does not affect visible program
behavior).

Most partial order methods described in the literature are static in the sense
that they determine independence of transitions by analyzing program text.
Such analyses are, however, not terribly effective with C programs, and typically
allow only very simple and conservative independence relations to be computed.
For C programs, therefore, it is more instructive to look at dynamic partial
order reduction methods[FG05],[GFYS07], in which independence relationships
are computed dynamically, during a model checking run. For example, one of
the simplest approaches to dynamic partial order reduction is to only allow a
context switch after an update or an access to a global memory location.

In the context of our tool, however, there is one additional complication caused
by the fact that the model checking engine (SPIN) treats the model as having a
single transition (denoted by the function pan step). In particular, this means
that support for partial order reduction therefore requires either exposing addi-
tional pancam state (which would require modification of SPIN, which we hope
to avoid), or for the reduction to be implemented entirely within pancam. We
adopt the latter strategy. Pancam performs partial order reduction on the state
space by allowing a thread i to execute a sequence of more than one instruction
as part of a single SPIN transition from a state s. We refer to such a sequence
of instructions as a “superstep” and denote it by the notation Λs

i . Since the
model checker only sees the first and last states of a superstep, the intermediate
states are hidden from the model checker, which in turn reduces the number of
interleavings to be explored (and therefore the number of states and transitions).

Of course, as with traditional partial order reduction, there are certain con-
ditions that must be satisfied by such supersteps in order to preserve soundness
of model checking. In the next subsection, we describe a set of conditions under
which we can preserve the soundness of next-time free LTL properties.

4.1 Correctness of Superstep Reduction

For convenience, we consider programs with k deterministic threads (or pro-
cesses), where the only source of nondeterminism comes from thread scheduling.
We also assume that each instruction can access at most one global memory
location. This assumption is safe to make about the LLVM bytecode, which uses
designated instructions store and load to access memory.

We say that two transitions α and β are independent if neither enables nor
disables the other, and for any state, execution of α followed by execution of
β results in the same state as execution of β followed by α. We say that two
transitions conflict if both access a common memory location and at least one

Verifying Multi-threaded C Programs with SPIN 333

of them is a write. Under the assumption that one thread may enable or disable
another only by means of mutexes, which are a type of a shared object, the
absence of a conflict between transitions implies independence as long as the
transitions do not belong to the same thread.

Claim 1. The soundness and completeness of next-time free LTL model check-
ing is preserved as long as for every thread i enabled in state s, superstep sequence
Λs

i satisfies the following three requirements:

1. Superstep Size. Λs
i must be finite and contain at least one transition. The

check for finiteness can be implemented conservatively by setting an upper
bound on the number of transitions in a superstep sequence or the number
of loop heads within the sequence.

2. Independenc. Only the very last transition of the path Λs
i conflicts with

any of the transitions in Λs
k for any thread k �= i.

3. Visibility. At most one transition which changes the value of any of the
atomic propositions is allowed in Λs

i . If exists, it must be the very last tran-
sition of the superstep sequence.

The formal proof of the claim is similar to the one presented in [CGP00] and is
beyond the scope of this paper. Here we only present some intuition about the
correctness of the superstep reduction.

(a)

r’ r’’

r’’’

s

α2

α1 β1

β2

γ3

γ2

γ1

Th1 Th2 Th3

(b)

s

g

r’

α1

α2

γ1

γ1

α1

β1

α2

β1

(c)

s

g

r’

γ1
β1

Λs
1

Fig. 5. Superstep POR

All the paths outgoing from a state s can be partitioned into sets, where each
set is covered by one of the superstep sequences as following. If, on the path θs,
all the transitions of the superstep sequence Λs

i precede the last transitions of
the superstep sequences that correspond to all the other threads, θs is said to
be covered by Λs

i . Consider the example in Fig. 5(a) that depicts the superstep
sequences of the three program threads (Th1, Th2, and Th3) from the program
state s. In Fig. 5 (b), the transitions γ1, α1, β1, α2 form the prefix of a number
of the program paths outgoing from state s. All these paths correspond to the

334 A. Zaks and R. Joshi

program runs in which, from the state s, the threads are scheduled in the fol-
lowing order. First, one transition of Th3 is scheduled, followed by a transition
from Th1, a transition from Th2, and another transition from Th1. We say that
all these paths are covered by the superstep sequence of Th1 since α2 occurs
before β2 and γ3 on each of the paths. At each state s, the superstep reduction
prunes away all the program paths which do not have a superstep sequence as a
prefix and substitutes the superstep sequence with just one summary transition
as shown in Fig. 5(c).

Let Θs be the minimal prefix of θs such that it contains all the transitions of
Λs

i . Then, all the states reachable after following path Θs can also be reached
after following Λs

i due to the fact that all the transitions of Θs which are not in
Λs

i do not conflict with the transitions in Λs
i and can be commuted out. Going

back to our example, since transitions β1 and γ1 do not conflict with α2, the
state g, reachable by following transitions γ1, α1, β1, α2, can also be reached by
following the superstep sequence α1, α2.

It only remains to show that the intermediate states of the paths Θs and Λs
i do

not have to be exposed to a model checking algorithm. The paths are finite; and,
by definition of Θs, its last transition is equal to the last transition of Λs

i . Following
the visibility requirement, only the very last transition of Λs

i and, consequently,
only the very last transition of Θs may change the values of the predicates partici-
pating in the LTL property being checked. Thus, all the states on the paths except
for the very last ones are indistinguishable from the state s. Moreover, since the
transitions of Θs that do not occur in Λs

i do not modify the values of the predi-
cates, the new values of the predicates in the last state of Θs are the same as in
the last state of Λs

i . Thus, if a transition changes one of the predicates, it will al-
ways be visible to the model checker. In the example on Fig. 5, only the transition
α2 can be visible. All the states can be partitioned into two groups depending on
the values of the predicates: the states undistinguishable from the state s and the
states undistinguishable from the state g.

Notice that the listed requirements are general enough to allow for differ-
ent choices of superstep sequences. However, as long as they are satisfied, the
soundness and completeness of LTL model checking is preserved.

4.2 Implementation of Superstep Reduction in Pancam

Next, we describe how superstep reduction is implemented as part of our tool,
which piggybacks the nested depth-first search algorithm used by SPIN. One
of the attractions of using SPIN’s nested depth-first search is that, unlike the
case with breadth-first search [GFYS07], our implementation is fully compatible
with checking of liveness properties. (And, although, we do not describe it here,
our method can be straightforwardly extended to cooperate with breadth-first
search, if desired.)

During its state exploration, SPIN issues calls to pan step(i), which, given
the current state s, computes the state s′ obtained by executing one or more
instructions of thread i. The executed instructions form the superstep sequence
Λs

i . The superstep size requirement guarantees that at least one instruction would

Verifying Multi-threaded C Programs with SPIN 335

ConflictType = { CONTINUE, POST STOP, PRE STOP }

pan step(ThreadID i) {
superstep length = 0;

if (not backtracking) {
init independence tester();

}

while (true) {
tri = get next instruction(i);
ConflictType error = test for independence(i, tri);
if (error == PRE STOP) break;
execute instruction(tri);
superstep length++;
if (superstep length ≥ MAX SUPERSTEP LENGTH) break;
if (error == POST STOP) break;
if (is proposition modifying(tri)) break;

} }

Fig. 6. Pseudocode of pan step with superstep reduction

be executed; consequently, unless there is a loop in the state space, s �= s′. Due
to the nature of depth-first search, pan step will be called multiple times on the
same state s. In particular, after exploring the state space in which thread i is
executed from state s, SPIN backtracks and attempts to execute the thread i+1
from the same state s in response to which pancam computes Λs

i+1.
The pseudocode of pan step is presented in Fig. 6. If the state s is visited by the

depth-first search for the very first time, pan step executes initialization routines.
Further, each time SPIN calls pan step(i), we compute the superstep sequence
for thread i by interpreting the enabled instructions of thread i one by one. On each
iteration, we check that addition of the corresponding instruction to the sequence
does not violate any of the requirements stated above (in practice, the checks are
only required for the instructions that access a global program location).

The most non-trivial check is the verification of the independence condition
for which one could use various static and dynamic methods. Fig. 7 presents the
dynamic independence check employed by pancam. Due to the nature of the in-
dependence requirement, the superstep of one thread depends on the transitions
that constitute the supersteps of the other threads. An eager approach to this
problem is to compute the supersteps for every thread the very first time the
state s is visited (with the request to take step on thread one) and use the pre-
computed supersteps on all the subsequent visits to the same state (when SPIN
backtracks to take step on the other threads). However, this solution leads to
inefficiencies since computing the supersteps effectively entails computation of
the successors of the state s. Storing the successor states along with the current
state leads to a large space overhead. Recomputing the successor states, on the
other hand, would impair the running time.

336 A. Zaks and R. Joshi

init independence tester() {
for (every enabled thread k) {
AccessTablesk.add(get access pair(get next instruction(k)));

}
}
test for independence(ThreadID i, Instruction tri) {

ai = get access pair(tri);
for (all threads k : k �= i) {
for (all ak ∈ AccessTablesk) {

if (conflict(ai, ak)) {
if (ak �= last of(AccessTablesk)) {

return PRE STOP;
} else {

if (tri �= first of(Λsi)) AccessTablesi.add(ai);
return POST STOP;

} } } }
if (tri �= first of(Λsi)) AccessTablesi.add(ai);
return CONTINUE;

}

Fig. 7. Pseudocode of the independence condition tester

The solution we present computes the supersteps lazily-whenever pan step(i)
is called, it only computes the superstep for thread i. To convey the information
about the supersteps which have already been computed, we store additional
information along with the program state on the depth-first search stack. For
each state s and each thread i, we store AccessTablesi - the list of location and
access type pairs. Each instruction of Λs

i that accesses a global is represented by
a pair (l, ty); it records the global location l that is accessed and the flag ty
stating whether the transition is a read or a write. AccessTable is not stored as
the part of the state tracked by SPIN but maintained externally within pancam
VM since the data it stores is updated each time the state is visited.

The very first time state s is visited, init independence tester() initial-
izes the AccessTablesi of each enabled thread i with the access information
derived from the very first instruction to be executed on the thread i. Fur-
ther, before adding an instruction tri to the superstep sequence of thread i,
pan step consults with test for independence(i, tri) to ensure that the inde-
pendence condition is met. test for independence may return three different
values. CONTINUE means that the instruction can be added to the superstep Λs

i

since it does not conflict with any instructions in Λs
k for all threads k �= i.

POST STOP means that tri introduces a conflict with some other thread, but
adding it to Λs

i does not violate the independence requirement as long as it
is the very last transition of Λs

i . Finally, PRE STOP means that adding tri to
Λs

i leads to a violation since the transition with which it conflicts is not the
very last transition of thread k for some k �= i; thus, tri must not be exe-
cuted. Due to the initialization of AccessTablesi, it is not possible to have a
PRE STOP on the very first transition of any of the threads; thus, the superstep

Verifying Multi-threaded C Programs with SPIN 337

size
requirement is met - pan step always executes at least one transition. Finally,
test for independence(i, tri) updates the AccessTableis with the access pair
derived from tri if the instruction is to be added to Λs

i and if it is not the very
first instruction of Λs

i . Recall that the AccessTable is updated with the access
pairs corresponding to the very first instructions of each thread as part of the
initialization routine.

The above technique requires no space overhead when used as part of breadth-
first search state exploration. However, when used with depth-first search, the
AccessTable must be stored on the search stack. In cases when the sets are quite
large, one could use approximations. For instance, one idea is to use a coloring
abstraction, in which the memory is partitioned into regions with distinct colors,
and each transition is associated with the set of colors it reads and writes.

s
Th3Th2

y := 6

Th1

t := *k ptr

t := t - x

t := t + y

m := m + 1

m := 4

l: = k

*x ptr := 8

Fig. 8. The example demonstrating the application of the Superstep POR algorithm.
The solid arrows represent the instructions that form the supersteps from the state s.

Example 1. Let us demonstrate the algorithm on an artificial example from
Fig. 8 that depicts the instructions that the three threads can execute from
the state s. We assume that the variables k, x, y, and m are global variables; t,
l, x ptr, k ptr are local; x ptr and k ptr are the pointers to x and k, respectively.

When the state s is visited for the very first time, init independence tester
initializes the AccessTable with the information derived from the very first
instructions of each thread as following:

AccessTables1 = ((k ptr, read))
AccessTables2 = ((ad(y), write))
AccessTables3 = ((ad(m), write))

Here ad(x) stands for the address in memory where the variable x is stored
(AccessTable stores the actual addresses of the accessed variables). After the
initialization, pan step issues calls to test for independence passing the in-
structions of Th1 one by one. The function returns CONTINUE when passed t
:= *k ptr and t := t - x. However, since t := t + y conflicts with the very
first instruction of Th2, POST STOP is returned as the result of the third call. The
table is updated accordingly:

AccessTables1 = ((k ptr, read); (ad(x), read); (ad(y), read))

338 A. Zaks and R. Joshi

When the depth-first search backtracks to schedule Th2, pan step calls test
for independence with y := 6 as the argument. Due to the conflict with the
last instruction of Th1, the function returns POST STOP, making y := 6 to be the
only instruction forming Λs

2. The AccessTables2 does not need to be updated.
Finally, when pan step(3) is called, the check for independence on the first

three instructions of Th3 returns CONTINUE. Even though both the third instruc-
tion of Th3 and the first instruction of Th1 read from the same memory location:
it can be determined at run time that k ptr equals ad(k), no conflict is reported.
However, the fourth instruction, ∗x ptr := 8, conflicts with the second entry in
AccessTables1 raising the PRE STOP return code. Since the conflicting transition
is not the last transition of Λs

1, ∗x ptr := 8 should not be included in Λs
3.

5 Experimental Results

We have gathered some initial experimental results with our prototype on a few
small multi-threaded C programs. Fig. 9 shows results from checking two ver-
sions of the implementation of Peterson’s algorithm in C, described in Section 2.
Fig. 9(a) shows the number of states explored against varying context bounds
for the version of the program with the missing volatile keyword bug, while
Fig. 9(b) shows similar results for the version of the program without the bug.
The graphs also compare a heuristic that runs a thread until it makes an access
to any global state (labeled “global access” in the figure) versus our superstep
reduction method (labeled “superstep”). As the graphs indicate, the bug is found
fairly easily in all versions, though increasing the context bound beyond a cer-
tain point makes it harder to find the bug. (This is likely a consequence of the
fact that SPIN uses depth-first search.) The graphs also show the benefit of
an abstraction function we used which tracks only the algorithmic state of the
protocol (the value of the abstract “flag” and “turn” variables).

Fig. 10 shows results from the “robot” benchmark example [GFYS07]. This
example consists of two threads that move across a shared board of size N ×N

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

S
ta

te
s

E
xp

lo
re

d

Context Bound

global access without abstraction
global access with abstraction
superstep without abstraction

superstep with abstraction

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

S
ta

te
s

E
xp

lo
re

d

Context Bound

global access without abstraction
global access with abstraction
superstep without abstraction

superstep with abstraction

(a) peterson.c with bug (b) peterson.c without bug

Fig. 9. Growth of state space with increasing context switch bound

Verifying Multi-threaded C Programs with SPIN 339

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 4 5 6 7 8 9 10 11 12

S
ta

te
s

E
xp

lo
re

d

Board Size

global access superstep

Fig. 10. Robot Example

Benchmark #states #states
global access superstep

Phil n=2 59 37
Phil n=3 534 380
Phil n=4 4762 3130
Phil n=5 42386 25021

IPC m=1 156863 234
IPC m=2 625359 316
IPC m=3 1529342 479
IPC m=4 ! 654
IPC m=15 ! 22629

Fig. 11. Other Examples

in slightly different patterns; the program checks that the robots meet only
in expected locations. As the graph shows, our superstep method provides a
noticeable reduction in the number of states over the global access method, as
the size of the board grows.

Fig. 11 compares the improvement of superstep reduction with respect to the
global access heuristic on two more examples. The first is a C implementation of
the classic dining philosophers algorithm, with varying number of philosophers
(denoted by parameter n). The second example is an inter-process communica-
tion module for an upcoming mission. The module consists of around 2800 lines
of (non-commented) C source code (including some support modules that it relies
on). It implements a communication system that supports prioritized messages
and provides thread-safe primitives for sending and receiving messages. To give
meaningful results, we restricted the model to a single producer-consumer pair,
and forced a bound of 4 context switches, while varying queue depth (denoted
by m). Even with the small configuration parameters, the default global access
heuristic exhausts memory resources for m = 4 (as denoted by the symbol !) on
a machine with 32 GBytes of RAM, whereas the superstep method can handle
much larger configurations (well over m = 15).

6 Related Work

There has been considerable interest in applying model checking directly to im-
plementation code. The Bandera checker [CDH+00] translates Java programs to
the input language for a model checker, while Java Pathfinder (JPF) [VHB+03]
uses an approach more similar to ours, in that it interprets bytecode. However,
JPF tightly integrates model checking with the virtual machine, whereas our tool
uses SPIN to orchestrate the search, using our virtual machine to execute transi-
tions. This allows us to inherit (for free) the various optimizations and features of
SPIN (both those that exist, and those yet to be invented). In spite of this loose
integration, our approach is flexible; for instance, as shown in Section 2, adding
support for bounding context-switches was done fairly easily in our tool. Using
Modex [HS99] - a tool which extracts PROMELA models from C implementations

340 A. Zaks and R. Joshi

provides similar benefits. However, the model extractor is guided by user-defined
abstractions, construction of which requires a considerable manual effort.

For verification of multi-threaded C programs, the CMC tool [MPC+02] uses
explicit-state model checking. One limitation of CMC, however, is that it requires
a manual step by the user to convert an existing C program into a form that can
be used by CMC. In contrast, by working directly on bytecode, our tool design is
simpler (interpreting typed LLVM bytecode is much easier than interpreting C).
In addition, we are able to detect errors introduced during compiler optimization
(like the Wikipedia error in Peterson’s algorithm, described in Section 2).

The changes introduced by compiler optimizations are also addressed by work
in connection with the CodeSurfer tool [BRMT05], in which program analysis is
applied to a model constructed from an executable. Advantages of this approach
are that, since it deals directly with object code, it is not tied to a specific com-
piler and it also catches errors introduced by the compiler back-end. However,
the constructed model is not precise since it has to recover information about
variables and types, which is especially difficult for aggregate types (such as
structures and arrays).

Another tool for verifying C programs is VeriSoft [God97], which uses state-
less model checking. VeriSoft uses static partial order reduction, which typically
results in little reduction when applied to C programs, since the independence
relation is hard to compute. More recent work on dynamic partial-order re-
duction [FG05] addresses this problem, and the modifications have been imple-
mented in the Inspect tool [YCGK07]. However, a limitation of these stateless
approaches is that it requires the search depth to be bounded, which poses a
challenge for programs whose state graphs have cycles.

More directly related to the superstep reduction presented in Section 4 is the
work on “cartesian partial order reduction” [GFYS07], which is a method that
dynamically computes independence relationships, and tries to avoid context
switching whenever possible. The ideas behind cartesian partial order reduc-
tion and superstep reduction are closely related, though there are significant
implementation differences. In particular, our reduction is done in the context
of SPIN’s depth-first search. While this complicates the design somewhat, and
incurs some additional memory overhead, it can be applied even when check-
ing liveness properties. (In contrast, the cartesian reduction method was applied
only in the context of checking assertion violations and deadlocks.)

Our approach to enforcing context-bounding is directly inspired by the work
on the CHESS model checker for concurrent C code [MQ08, MQ07]. One point
of departure is that, even with fair scheduling, CHESS only checks livelocks; in
contrast, our approach is able to handle general liveness properties.

7 Conclusion

We have described a tool that can be used in conjunction with the SPIN model
checker to check multithreaded C programs. Our tool works by generating typed
bytecode generated for the Low-Level Virtual Machine (LLVM), which is then

Verifying Multi-threaded C Programs with SPIN 341

interpreted by a virtual machine (named “pancam”). The virtual machine is de-
signed to be used with SPIN, and the resulting tool therefore supports almost
all SPIN features such as bitstate verification and multi-core operation. We have
also shown we address the state explosion problem by allowing users to spec-
ify abstraction functions, context-switching bounds, and by using an on-the-fly
algorithm for reducing unnecessary context switches. We are currently working
on extending our tool to support checking liveness properties in the context of
SPIN nested depth-first search.

References

[BRMT05] Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: Wysinwyx: What
you see is not what you execute. In: Proceedings of the IFIP Working
Conference on Verified Software: Theories, Tools, Experiments (VSTTE)
(October 2005)

[CDH+00] Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Laubach, S.,
Zheng, H.: Bandera: Extracting finite-state models from java source code.
In: Proceedings of the 22nd International Conference on Software Engi-
neering (ICSE) (June 2000)

[CGP00] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cam-
bridge (2000)

[FG05] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model
checking software. In: Proceedings of the 32nd ACM Symposium on Pro-
gramming Languages (POPL), pp. 110–121 (2005)

[GFYS07] Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order
reduction. In: SPIN Workshop on Model Checking of Software, pp. 95–
112 (2007)

[GJ08] Groce, A., Joshi, R.: Extending model checking with dynamic analysis.
In: Proceedings of the Conference on Verification, Model Checking and
Abstract Interpretation (2008)

[God97] Godefroid, P.: Model checking for programming languages using verisoft.
In: Proceedings of the 24th ACM Symposium on Principles of Program-
ming Languages (POPL) (1997)

[HB07] Holzmann, G.J., Bosnacki, D.: The design of a multi-core extension of
the spin model checker. In: IEEE Transactions on Software Engineering,
October 2007, vol. 33, pp. 659–674 (2007)

[HJ04] Holzmann, G.J., Joshi, R.: Model-driven software verification. In: SPIN
Workshop on Model Checking of Software, pp. 76–91 (2004)

[Hol03] Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, Reading (2003)

[HS99] Holzmann, G., Smith, M.: A practical method for verifying event-driven
software. In: International Conference on Software Engineering, pp. 597–
607 (1999)

[LA04] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In: Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization (CGO 2004),
Palo Alto, California (March 2004)

342 A. Zaks and R. Joshi

[MPC+02] Musuvathi, M., Park, D., Chou, A., Engler, D., Dill, D.: CMC: A prag-
matic approach to model checking real code. In: Symposium on Operating
System Design and Implementation (2002)

[MQ07] Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic test-
ing of multithreaded programs. In: Proceedings of the 34th ACM Sympo-
sium on Programming Languages (POPL), pp. 446–455 (2007)

[MQ08] Musuvathi, M., Qadeer, S.: Fair stateless model checking. In: Proceedings
of the ACM SIGPLAN Conference on Programming Languages Design
and Implementation (PLDI) (2008)

[Pel93] Peled, D.: All from one, one for all: on model checking using representa-
tives. In: Proceedings of the 5th Conference on Computer Aided Verifica-
tion, pp. 409–423. Springer, Heidelberg (1993)

[QR05] Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent soft-
ware. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems, April 2005, pp. 93–107 (2005)

[VHB+03] Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking
programs. Automated Software Engineering 10(2), 203–232 (2003)

[wik] Peterson’s algorithm,
http://en.wikipedia.org/wiki/Peterson’s algorithm

[YCGK07] Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Distributed dy-
namic partial order reduction based verification of threaded software. In:
Proceedings of the 14th International SPIN Workshop (July 2007)

http://en.wikipedia.org/wiki/Peterson's_algorithm

Author Index

Abed, Nazha 214
Andel, Todd R. 26

Baier, Christel 60
Bao, Tonglaga 42
Bjørner, Nikolaj 9
Bultan, Tevfik 306

Chen, Xiaofang 288
Choi, Yunja 144
Ciesinski, Frank 60
Cova, Marco 306

de Halleux, Jonathan 9
Dwyer, Matthew B. 1

Esparza, Javier 270
Evangelista, Sami 77

Fecher, Harald 95

Ganai, Malay K. 114
Gopalakrishnan, Ganesh 288
Groce, Alex 134
Größer, Marcus 60
Gupta, Aarti 114

Hansen, Eric A. 160
Holzmann, Gerard J. 134

Ibarra, Oscar H. 306

Jones, Mike 42
Joshi, Rajeev 134, 325

Kim, Hotae 144
Kim, Moonzoo 144
Kim, Yunho 144
Kirby, Robert M. 288

Lamborn, Peter 160
Leue, Stefan 176

Mateescu, Radu 196

Nguyen, Viet Yen 232

Oudot, Emilie 196

Parker, David 60
Purandare, Rahul 1

Qadeer, Shaz 3

Ruys, Theo C. 232

Schulte, Wolfram 9
Schwoon, Stefan 270
Shoham, Sharon 95
Shukla, Sandeep K. 250
Singh, Gaurav 250
Smaragdakis, Yannis 7
Ştefănescu, Alin 176
Suwimonteerabuth, Dejvuth 270

Tillmann, Nikolai 9
Tripakis, Stavros 214

Vanoverberghe, Dries 9
Vincent, Jean-Marc 214

Wei, Wei 176

Yang, Yu 288
Yasinsac, Alec 26
Yu, Fang 306

Zaks, Anna 325

	Title Page
	Preface
	Organization
	Table of Contents
	Residual Checking of Safety Properties
	The Limits of Verification
	Prove What You Can and Focus on the Remainder
	References

	The Case for Context-Bounded Verification of Concurrent Programs
	References

	Combining Static and Dynamic Reasoning for the Discovery of Program Properties
	References

	Using Dynamic Symbolic Execution to Improve Deductive Verification
	Introduction
	Dynamic Symbolic Execution
	Introduction
	Symbolic State Representation
	Test Inputs and Non-deterministic Programs
	Making Basic Contracts Executable

	Example
	Quantifiers
	Introduction
	Compiling a Quantifier to a Non-deterministic Program
	Pattern Based Quantifier Instantiation
	Run-Time-Guided Pattern Matching

	Related Work
	Conclusion
	References

	Automated Evaluation of Secure Route Discovery in MANET Protocols
	Introduction
	Evaluating Secure Routing
	Requirements for Secure Routing Protocols
	Current Evaluation Techniques
	An Exhaustive Evaluation Approach

	Model Checking Secure Routing
	Modeling the Wireless Medium
	Modeling Source Routing Protocols
	Modeling the Attacker

	Automated Topology Generation and Analysis
	Evaluation Criteria and Results
	Attacking Ariadne
	Attacking endairA

	Conclusion
	References

	Model Checking Abstract Components within Concrete Software Environments
	Introduction
	Related Work
	Environment Generation
	Abstraction

	Algorithm
	State Exploration
	Abstraction

	Implementation
	Results
	Conclusion and Future Work
	References

	Generating Compact MTBDD-Representations from {\sf Probmela} Specifications
	Introduction
	Preliminaries
	From {\sf Probmela} to {\sf PRISM}
	Optimizations of the MTBDD Representation
	Implementation and Results
	Conclusion and Future Work
	References

	Dynamic Delayed Duplicate Detection for External Memory Model Checking
	Background
	A Variation of Hash-Based Duplicate Detection
	Some Structural Properties of State Spaces
	Dynamic Delayed Duplicate Detection
	Principle
	The Algorithm
	Deciding When to Perform Duplicate Detection
	Performing Partial Duplicate Detections
	Extensions

	Experiments
	Conclusion
	References

	State Focusing: Lazy Abstraction for the Mu-Calculus
	Introduction
	Underlying Structures
	CEGAR Via Lazy Abstraction
	Conclusion
	References

	Efficient Modeling of Concurrent Systems in BMC
	Introduction
	RelatedWork
	Our Approach: Overview
	Our Contributions

	Preliminaries
	Concurrent System: Model and Semantics
	Building EFSMs from C Threads
	Control State Reachability (CSR) and CSR-Based BMC Simplification

	Motivation: WhyWait-Cycles Are Bad?
	Lazy Modeling Paradigm: Overview
	Basic Approach

	Lazy Modeling of Concurrent Systems
	Sound Abstraction: Independent Thread Models
	Concurrency Constraints

	Correctness and Size Complexity
	Size Complexity

	Removal of Redundant Concurrency Constraints
	Experiments
	Comparing BMC Results
	Comparison with RelatedWork

	Conclusions and Future Work
	References

	Tackling Large Verification Problems with the Swarm Tool
	Introduction
	Leveraging Search Diversity
	Algorithms
	The Swarm Tool
	Conclusion
	References

	Formal Verification of a Flash Memory Device Driver – An Experience Report
	Introduction
	Overview of the OneNAND Verification Project
	Overview of the Device Driver Software for OneNAND Flash Memory
	Overview of the Sector Translation Layer (STL)

	Multi-sector Read Operation
	Model Checking MSR Using NuSMV
	Model Translation
	Performance Analysis
	Data Abstraction

	Model Checking MSR Using Spin
	Model Translation
	Data Abstraction
	Performance Analysis

	Model Checking MSR Using CBMC
	Model Translation
	Performance Analysis

	Discussion
	Application ofModel Checking in Industrial Software Projects
	Advanced Abstraction Techniques
	Scalability of Model Checking

	Conclusion and Future Work
	References

	Layered Duplicate Detection in External-Memory Model Checking
	Introduction
	Background
	Partial Storage Methods
	External-Memory Search

	Algorithm
	Breadth-First Search with Layered Duplicate Detection
	Delayed Duplicate Detection
	Counterexample Reconstruction
	Termination

	Results and Analysis
	Effective State Caching Saves Time and Space
	Layer Sizes
	Transition Locality in Partial Delayed Duplicate Detection
	Model Descriptions
	Theoretical Results

	Conclusion and Future Work
	References

	Dependency Analysis for Control Flow Cycles in Reactive Communicating Processes
	Introduction
	Preliminaries
	Cycle Dependencies
	The Causes of Cycle Dependencies

	Discovering Dependencies from Condition Statements
	Locally Determined Conditions
	Globally Determined Conditions

	Discovering Dependencies from Message Receiving Statements
	The Refinement of a Livelock Freedom Test
	Experimental Results
	Conclusion
	References

	Improved On-the-Fly Equivalence Checking Using Boolean Equation Systems
	Introduction
	Background
	Encoding Bisimulation Relations as BESs
	Local BES Resolution Based on Suspend/Resume DFS
	Implementation and Experiments
	Conclusion and Future Work
	References

	Resource-Aware Verification Using Randomized Exploration of Large State Spaces
	Introduction
	Context and Algorithms
	A Generic Randomized Exploration Scheme
	Evaluation Criteria

	Theoretical Results
	Case of Trees
	Case of Grids

	Experimental Results
	Cover Time
	Resource-Aware vs. Exhaustive Verification

	Conclusions and Future Work
	References

	Incremental Hashing for Spin
	Introduction
	Related Work
	Incremental Hashing
	SPIN

	Generalised Incremental Hashing Scheme
	Incremental Property
	Time-Complexity
	Variants
	Implementation Examples

	Experimental Method
	Implementation
	BEEM Benchmarks
	Setup

	Results and Discussion
	Exhaustive Verification
	Bitstate Hashing
	Hash-Compaction
	Optimisation Flags
	Memory Consumption
	Profiler Runs
	Extremely Long Runs

	Conclusions
	References

	Verifying Compiler Based Refinement ofBluespec^{\it TM} Specifications Using the SPIN Model Checker
	Introduction
	Background - High-Level Synthesis from BSV
	Hardware Description
	Synthesis
	Scheduling of Actions

	Correctness Requirements for BSV Designs
	AOA Semantics
	Concurrent Semantics
	Comparing Two Implementations

	Converting BSV Model to PROMELA Model
	Generating PROMELA Variables and Processes
	Adding Scheduling Information to PROMELA Model
	Sample PROMELA Models

	Formal Verification Using SPIN
	Verifying Correctness Requirement 1 (CR-1)
	Verifying Correctness Requirement 2 (CR-2)
	Verifying Correctness Requirement 3 (CR-3)
	Sample Experiments

	Summary
	References

	Symbolic Context-Bounded Analysis of Multithreaded Java Programs
	Introduction
	Context-Bounded Reachability
	Pushdown Networks
	Extensions
	The Reachability Problem for Pushdown Networks
	View Tuples
	A Meta-Algorithm for Context-Bounded Reachability

	Lazy Splitting
	Confluence and Safe Partitions
	Computing the Confluence Relation
	Computing a Safe Partition

	Implementation
	The Model
	The Translator

	Experiments
	{\tt java.util.Vector} Class
	Windows NT Bluetooth Driver
	Binary Search Trees

	Conclusions
	References

	Efficient Stateful Dynamic Partial Order Reduction
	Introduction
	Background Definitions
	Capturing Local States of Threads
	Stateful Dynamic Partial Order Reduction
	Background
	Stateful DPOR
	Efficient SDPOR

	Implementation
	Experimental Results
	Related Work
	Conclusion
	References

	Symbolic String Verification: An Automata-Based Approach
	Introduction
	Automata-Based String Analysis
	String Operations on Automata
	Widening Automata
	Experiments
	Related Work
	Conclusion
	References

	Verifying Multi-threaded C Programs with SPIN
	Introduction
	Model Checking C Programs with Pancam
	Addressing State Space Explosion
	Abstraction
	Context-Bounded Checking

	On-the-fly Superstep Reduction
	Correctness of Superstep Reduction
	Implementation of Superstep Reduction in Pancam

	Experimental Results
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

